
6-17

Chapter

6.1
Principles of Magnetic Recording

E. Stanley Busby

6.1.1 Introduction

Magnetic recording enjoys a rich history. The Danish inventor Valdemar Poulsen made the first
magnetic sound recorder when, in 1898, he passed the current from a telephone through a
recording head held against a spiral of steel wire wound on a brass drum. Upon playback, the
magnetic variations in the wire induced enough voltage in the head to power a telephone
receiver. Amplification was not available at the time.

The hit of the Paris Exposition of 1900, Poulsen’s recorder won the grand prize. In this mag-
netic analog of Edison’s acoustic recorder (which impressed a groove on a rotating tinfoil-cov-
ered drum), one whole cylinder held only 30 s of sound. In a few years, the weak and highly
distorted output of Poulsen’s device was vastly improved by adding a fixed magnetizing current,
called bias, to the output of the telephone. This centered the signal current variations on the
steepest part of the curve of remanent magnetism, greatly improving the gain and linearity of the
system.

In 1923, two researchers working for the U.S. Navy first applied high-frequency ac bias. This
eliminated even-order distortion, greatly reduced the noise induced by the surface roughness of
the medium, and improved the amplitude of the recovered signal. Except in some toys, ac bias is
used in all audio recorders.

Wire recording, further developed in the United States, found wide use during World War I1
and entered the home recording market by the late 1940s. Wire recorders had no capstan and
pinch roller to establish uniform speed. Instead, a relatively large takeup spool, having a small
difference between empty and full diameters, rotated at a constant angular speed. The wire speed
therefore varied slightly between start and finish. As long as the change in diameter during play-
back equals the change during record, tonal changes did not occur.

A recorder using solid steel tape on large reels was developed in Europe. Licensed for manu-
facture by Marconi and others, it was used by European broadcasters before 1940. In some
installations, a wire cage around the recorder protected operators from the consequences of
breakage of the spring-steel tape.

Development of coated magnetic tape began in Germany in 1928. The first tapes consisted of
black carbonyl iron particles coated on paper, using a technique developed by Fritz Pfleumer to
bronze-plate cigarette tips. By 1935, Badische Anilin und Soda Fabrik (BASF), a division of I.
G. Farben, had produced cellulose acetate base film coated with gamma ferric oxide. During the
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war years, the tapes used for broadcasting were a suspension of oxide particles throughout the
thickness of the acetate. Beginning in 1939, polyester substrates, which have superior strength
and tear resistance, replaced acetate.

During World War 11, German broadcasters used Magnetophons made by the Allgemeine
Elektrizitat Gesellschaft (AEG). At the end of the war, a U.S. Signal Corps major, John T. Mul-
lin, obtained two machines. Too large for a mail sack, they were dismantled and gradually
shipped home to California in pieces along with 50 rolls of tape. Unlike the military field dicta-
tion recorders, which used dc bias, the machines used for broadcasting were equipped with high-
frequency ac bias.

6.1.1a Development of Modern Recording Devices

In 1946, using modified electronics, Mullin demonstrated a Magnetophon at a San Francisco
meeting of the Institute of Radio Engineers. Among the engineers attending the meeting were
Harold Lindsay and Charles Ginsburg. Both men were to influence greatly the future of magnetic
recording. Mullin and his partner William Palmer, a San Francisco filmmaker, took a machine to
Hollywood to demonstrate it at the Metro-Goldwyn-Mayer film studios. Alexander M. Poniatoff,
founder of the Ampex Corporation, then a maker of electric motors, heard a demonstration. In
search of a postwar product, he determined then to develop a tape recorder. He hired Lindsay to
lead the design team.

Mullin demonstrated his recorder to the renowned singer Bing Crosby. Recorded on disk,
Crosby’s Sunday-evening radio show had such poor sound quality that the sponsor began press-
ing him for live broadcast. Crosby disliked live broadcast intensely and hired Mullin to record
the 26 shows of the 1947–1948 season. These were recorded on the captured Magnetophons by
using the captured tape. Lacking confidence in the new technology, the American Broadcasting
Company (ABC) transferred each show to disk for broadcast.

Contractual arrangements with others prevented Mullin from providing any circuit details to
Lindsay. Nevertheless, Lindsay completed a prototype and demonstrated it to Crosby. Twenty
recorders were ordered by the ABC network, saving the faltering company.

In the absence of wartime restrictions, applications of the new technology spread quickly. In
1949 performers Les Paul and Mary Ford pioneered the technique of recording multiple parts
performed by one person. Recorders also were used to overcome the 3-h time displacement
between the east and west coasts of the United States and Canada. Used as data recorders, they
aided vibration analysis, medical research, and other endeavors involving signals occupying the
audio spectrum.

At about 1950, the recording of a frequency-modulation (FM) carrier, or of a pulse-code-
modulated signal, extended the low-frequency response to nearly zero. Recording of strain
gauges, pressure sensors, depth sensors, seismic events, and other slowly varying signals became
possible. Called instrumentation recorders, these machines were put to use in automotive test
vehicles, flights of experimental airframes, submarines, and space vehicles.

In the 1950s, developments in magnetic recording diverged into separate, but related, paths,
each growing within its own domain.

The professional audio recording industry developed multitrack recorders, portable audio
recorders, electronic editing techniques, and machine synchronizers that could speed-lock one
audio reproducer to other audio recorders, television recorders, or film cameras.
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Several researchers extended the high-frequency response of magnetic recorders to include
the wide bandwidth of a (then monochromatic) television video signal. At the time, kinescope
recordings were made by photographing a TV picture tube on 16-mm movie film. Mullin, by
then employed by Crosby Enterprises, developed an 11-track recorder which divided the video
bandwidth into 10 equal portions. The first to be demonstrated, the recorder failed to achieve
acceptance by broadcasters. The recorder was modified to serve as an instrumentation recorder
and, along with the Crosby laboratories, was sold to the Minnesota Mining and Manufacturing
Company to seed a line of wideband data recorders.

The Radio Corporation of America (RCA) showed an experimental machine having four
tracks, one for each of the three primary colors and one for sound and synchronization. Its effort
and a similar one by the British Broadcasting Corporation (BBC) failed for lack of market sup-
port.

Ginsburg, then employed by Poniatoff, developed the first practical videotape recorder. It
used 2-in-wide tape and a rotating drum with four heads spaced 90 degrees apart around its
periphery. One television picture required 32 traverses across the width of the tape. Further
developed over 25 years, the technology was expanded to adapt to color television, stereo audio,
longer playing time, and automated editing methods. Given the name quadruplex, the technology
was extended to the recording of digitized video. A quadruplex digital TV recorder was demon-
strated in 1976 but was not commercialized.

Helical-scan recording eventually replaced the quadruplex method. Long diagonal tracks are
recorded at a shallow angle across 1-in-wide (or smaller) tape. Each track contains one television
field. Less expensive to operate and maintain than quadruplex recorders, helical-scan recorders
were capable of visual “tricks,” for example, still and slow motion display.

A television recorder must accommodate the associated sound. In both technologies, sound is
recorded longitudinally, as in audio recorders. The audio tracks are located at or near the edges of
the tape, the area most difficult for the rotating video heads to contact reliably.

The use of audio FM carriers, written by the video heads, was borrowed from home video
technology for use in 1/2-in professional recording formats. This method offered excellent per-
formance but was not amenable to editing audio separately from video, nor could it easily offer
more than two channels.

As early as 1950, multichannel data recorders became available. They offered a wide range of
speeds to provide time-base expansion and contraction, and bandwidths to 4 MHz per track, with
tape speeds to 240 in/s. Adapted for data recording, rotary-head recorders achieved data rates of
500 Mbits/s. All rotary-head machines record at least one track along the length of the tape.

Audio recorders for the home, introduced in the early 1950s, and the prerecorded tapes pro-
vided for them were offered as long-life replacements for disks. These fell victim to the develop-
ment of small lightweight recorders in which a narrow tape and its reels were housed in a small
cassette. The ease of handling brought commercial success. Small battery-powered playback
machines, having counter-rotating flywheels to cancel the angular acceleration induced by walk-
ing or running, soon became part of the street scene.

The insulation of the public from the mechanical niceties of preparing a reel of tape for use
was an essential element in the introduction of video recorders into the home, all of which now
use cassette tape. At first, television audio recording used the conventional longitudinal method,
with limited performance. By 1983 two audio channels were impressed on frequency-modulated
carriers and recorded along with the video by using the video record head. The audio perfor-
mance of these home systems rivaled or exceeded the best of the professional analog recorders of
the time.



6-20 Audio Recording Systems

6.1.1b Basic System Components

The essential elements of a magnetic recorder are shown in Figure 6.1.1. A supply reel holds
unused tape. A takeup reel collects used tape. A capstan establishes a constant linear tape speed.
These mechanical elements combine to move the tape past the following:

• An erase head (optional). This is not a necessary element but is convenient. If it is not used,
the tape must be erased elsewhere, usually on the reel in a device designed for bulk erasure.

• A record head (mandatory). The magnetic particles on the tape are influenced by the signal
current in the record head as they pass by its gap. A bias signal is added which is either sub-
sonic (dc) or supersonic (ac). It is important to remember that the addition of bias is a simple
linear mix, and no modulation takes place.

• A reproduce head (the record head can be used after rewinding). The magnetized particles on
the tape have fields which can link with the metal structure of the head and thereby induce a
voltage in its winding.

6.1.2 General Recording and Reproduction Theory

If the signal current in the record head is directly proportional to the input signal, the recording is
a direct recording. Almost all analog audio recorders use direct recording. If the record current is
a frequency-modulated carrier on which the input signal is impressed, the recorder uses the FM
method. Seldom employed for audio recording, FM recording is useful when the low-frequency
response must be extended to zero or when the tape speed is too slow to support adequate fre-
quency response, as in home video recorders. In this case, one or more FM carriers are recorded
by the rotating video heads.

If the record current is a series of binary pulses whose repetition time varies according to the
input signal, the recording method is called pulse-position modulation. This is not a digital
recording in the usual sense but rather a form of phase modulation analytically similar to FM.

Figure 6.1.1 Essential elements of a tape recorder.
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If the record current is a series of binary bits or a carrier modulated by binary bits, the method
is called pulse-code modulation (PCM). In PCM, the input signal is sampled at a uniform rate
that is greater than twice the input frequency range. Each sample is converted to a binary num-
ber, typically using 16 bits or more. The binary numbers are recorded, then later reproduced and
converted to analog voltages.

In direct recording, the magnitude of the remanent magnetism left on the tape is a function of
the input signal. In all other methods, it is constant, and the data are stored in the form of time
variations or numeric values. Also, all other methods record at or near the maximum magnetic
field that the tape can sustain. A strong constant recording field causes considerable (or by
design, complete) erasure of previous recordings.

Some systems, therefore, need no erase head. All audio direct recorders, aside from toys, have
an erase head.

6.1.2a Physical and Magnetic Relations

The maximum signal which can be recovered by a reproduce head is a function of many physi-
cal, electrical, and magnetic parameters. Some of these are defined in the following short glos-
sary:

wavelength The distance along the tape, in the direction of tape motion, which is occupied by
one cycle of a recorded signal. It is given by , where λ = wavelength (any unit of
length), u = tape speed (same unit per second), and f = frequency of recorded signal (Hz).

magnetomotive force (F) The magnetic analog of electrical voltage, often expressed in ampere-
turns, the product of a current and the number of turns in a coil of wire through which the
current flows.

magnetic field (H) The magnetomotive force per unit length, usually expressed in oersteds. The
relation between oersteds and ampere-turns is

where At = ampere-turns and l = length (meters).

flux density (B) The intensity of a magnetic field per unit of cross-sectional area. A magnetic
analog of electrical current, flux density is usually expressed in gauss.

permeability The magnetic analog of electrical conductance. The permeability of air is taken as
unity. The permeability of metals and alloys used in recording range from the low thou-
sands to the tens of thousands. For a given magnetomotive force, the resulting flux density
is proportional to permeability. Initial permeability (at low flux densities) is given by

Where:
µ = permeability (a ratio)

λ u f⁄=

H
1000 At×
4π l×
------------------------=

µ 1 B
H
----+=
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H = magnetizing field
B = resulting flux density

saturation The maximum flux density that a material can sustain. As an applied magnetomotive
force is increased, the permeability diminishes, until, at saturation, the permeability is unity
and the flux density fails to increase further. In general, materials with high permeability
have low saturation. It is important to select record-head materials, for example, which do
not saturate at a lower level than the tape material. The efficiency of reproduce heads is
maximized by choosing materials of the highest permeability.

remanence The ability of a magnetic material to retain magnetism after a magnetomotive force
has been removed. Permanent magnets and recording media are selected for high rema-
nence. Record and reproduce heads, shields, and transformer cores are chosen for high per-
meability and low remanence.

coercivity The measure of the magnetomotive force required to demagnetize a previously satu-
rated remanent material.

squareness ratio The ratio of the saturation flux density to the remanent flux. High squareness
ratio is a desirable property of recording media.

Weber A unit of flux. An ac magnetic field of 1 Wb at a frequency of 1 Hz, if linked with one
turn of wire, will induce 1 V. Recording levels are typically expressed in terms of nanowe-
bers per meter of track width.

6.1.2b Basic Direct Recording and Reproduction

With the addition of ac bias, the remanent magnetism remaining on the tape is a reasonably lin-
ear function of the signal current in the record head.

The maximum voltage available at the reproduce-head terminals is directly proportional to
the track width, the remanent magnetism of the tape material, the rate of change of magnetism
(and therefore, frequency), and the number of turns of wire on the head assembly. The basic
expression is

(6.1.1)

Where:
e = instantaneous peak induced voltage
d  = rate of change of induced flux
N = number of turns
d t = rate of change of time
K = scale factor, representing all other effects

K is influenced mostly by losses related to short wavelengths.

e KN dφ
dt
-----=

φ
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6.1.3 Magnetization

Almost all the magnetic properties of materials used in audio recording stem from the axial spins
of the third shell of orbiting electrons of the atom. The electrical charge of the electron rotates,
generating a current, which in turn generates a magnetic field. In nonmagnetic materials, elec-
trons occur in pairs having opposing spin, canceling the magnetic effect. Iron, in particular, is
heavily unbalanced, and nickel and chromium also exhibit magnetism. Compounds and alloys of
these are useful in tape recorders. Applications include motors, transformers, loudspeakers,
heads, tape, and shields.

The crystalline structure of magnetic materials includes groupings of millions of atoms
whose spin axes are aligned. Each group is called a domain and in effect is a tiny saturated mag-
net. The direction of magnetization can be reversed by the application of a strong opposing field.
In demagnetized materials, the direction of magnetization of the domains is randomly distrib-
uted, resulting in a net sum of zero.

6.1.3a Hard and Soft Materials

Figure 6.1.2a illustrates a hysteresis curve of a remanent or hard magnetic material; i.e., one
which is difficult to demagnetize and therefore is useful for permanent magnets and recording
media. Figure 6.1.2b is a curve representative of a “soft,” easy-to-demagnetize material useful
for transformers, heads, and shields.

In Figure 6.1.2b the curve of initial magnetization shows the result of increasing an applied
field on a demagnetized material. Around the origin, the effect is reversible; i.e., upon removal,
the material will return to its random state. As the field is increased, the flux density increases as
more domains switch direction in response to the applied field.

At point Bs , not only have all domains switched, but those whose spin axes are aiding but are
not perfectly aligned have their axes deflected to line up with the applied field. This is known as
saturation. If the magnetizing field H is removed, the flux density decreases somewhat as the
domains that were not perfectly aligned revert to their undeflected axis angle; i.e., not 100 per-
cent aiding but not opposing either. This is shown in Figure 6.1.2 as point Br.

The ideal tape particle is a single domain with its spin axis aligned with the lengthwise
dimension of the tape. If these alignments were perfect, Br would equal Bs and the hysteresis

(a) (b)

Figure 6.1.2 Hysteresis curves: (a) a hard material, (b) a soft material.
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loop would approach a square. The ratio Br /Bs , called the squareness ratio, is therefore a mea-
sure of the success in aligning tape particles during manufacture.

If the applied field is increased in the opposite direction, more domains switch again until
point –Hc is reached. Here, half of the domains have switched and half have not, resulting in a
net flux density of 0. The force required to reach this point in a previously saturated material is
the measure of the coercivity of the material.

6.1.3b Bias

Figure 6.1.3a is a plot of remanent flux versus an applied field, showing the effect of dc bias. The
curve is not symmetric about the bias point; therefore, the spectrum of distortion components of
a recorded sine wave will contain even as well as odd multiples of the fundamental frequency. A
tape recorded without audio still will generate a signal as the tape moves over the reproduce
head. Surface roughness and a coating thickness that varies at audio rates will directly modulate
the field in the reproduce head, generating noise.

Figure 6.1.3b illustrates ac bias. The peak-to-peak amplitude of the supersonic signal is con-
stant and is about twice the dc value. The bias signal can be thought of as a high-frequency
switching signal, magnetizing for half of the time in one direction and half in the other. The noise
performance is vastly improved because the net average magnetization is 0. The sum of the
shapes of the upper and lower portions of the curve is such that even-order-harmonic-distortion
components of the audio signal cancel.

6.1.3c Erasure

Figure 6.1.4 shows the hysteresis loops traced as a remanent material is exposed to a large,
slowly decreasing magnetic field. The net result as the ac field approaches 0 is to randomize the
domains, leaving the material demagnetized. The high-frequency excitation of an erase head is
constant, and the diminishing field effect is obtained as a given spot on the tape moves away
from the gap of the head. The choice of frequency and tape speed must cause the tape to experi-
ence several field reversals.

6.1.4 Magnetic Recording Materials

The active component of magnetic tape is the first of four components:

• The magnetic material itself.

• A binder, or glue, which surrounds the magnetic material and holds it to a plastic support.

• A plastic support, usually polyethylene terephthalate, also known as polyester. After coating,
if slit into strips, it becomes tape.

• A conductive back coating is applied if the application includes severe winding-speed
requirements.
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6.1.4a Iron Oxide

Having a coercivity of 300 to 360 Oe, gamma ferric oxide is the most widely used recording
material. The first step in its preparation is the precipitation of seeds of geothite [alpha FeO
(OH)], from scrap iron dissolved in sulfuric acid, or of lepidocrocite [gamma FeO (OH)], pro-
duced from ferrous chloride.

After further growth the seeds are dehydrated to hematite (alpha Fe2O3), then reduced to
magnetite (Fe3O4). It is then oxidized to maghemite (gamma Fe2O3), which not only is magnetic
but has the desired acicular (rod-shaped) form with an aspect ratio of 5 or 10: 1. The length of
the particles is 0.2 to 1.0 µm.

6.1.4b Cobalt-Doped Iron Oxide

Having a coercivity of 500 to 1200 Oe, the preferred preparation causes cobalt ions to be
adsorbed upon the surface of gamma ferric oxide particles as an epitaxial layer. This is one form
of high-bias tape.

6.1.4c Chromium Dioxide

Offering coercivities of 450 to 650 Oe, this material provides a slightly higher saturation magne-
tization, 80 to 85 emu/g, compared with 70 to 75 emu/g for gamma ferric oxide. It has high acic-
ularity and lacks voids and dendrites. It has a low curie temperature, making it a likely candidate
for contact duplication of video tapes or other short-wavelength recordings.

Chromium dioxide is abrasive, tending to reduce head life. It is less stable chemically than
iron oxide. At extremes of temperature and humidity, it can degrade to nonmagnetic compounds
of chromium. Tapes made with cobalt or chromium oxides yield output levels of 5 to 7 dB
greater than gamma ferric oxide of the same coating thickness. Chromium dioxide does have a

(a) (b)

Figure 6.1.3 Bias for audio recording applications: (a) dc bias, (b) ac bias.
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problem in respect to disposal. In many countries, chromium and its compounds are subject to
special treatment when discarded.

6.1.4d Iron Particle

Tapes made from dispersions of finely powdered metallic iron particles are capable of 10- to 12-
dB greater signal output than gamma ferric oxide tapes. These tapes have high saturation magne-
tization (150 to 200 emu/g), a retentivity of 2000 to 3000 G, and a coercivity of 1000 to 1500 Oe.

Several processes generate metal particles. One is the reduction of iron oxide in hydrogen.
Another is the reduction of ferrous salt solutions with borohydrides.

Metal particles, being very small, take longer to disperse, a disadvantage in manufacture.
When dry, iron particles are highly reactive in air and present a processing hazard. Corrosion at
elevated temperatures and humidity is also a problem.
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Figure 6.1.4 Erasure by a diminishing ac field.
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Chapter

6.2
Analog Tape Recording

E. Stanley Busby

6.2.1 Introduction

Within the audio passband, frequency-dependent recording losses are generally negligible, con-
sisting mainly of changes in the permeability of reproduce-head cores versus frequency. Most
reproduce losses are directly related to the recorded wavelength, which, at a given tape speed, can
be expressed in terms of frequency.

In an imaginary perfect reproduce system, the output from the reproduce head would double
with each doubling of frequency. Various effects cause the output at high frequencies to be less
than ideal, including:

• Thickness loss

• Spacing loss

• Azimuth loss

• Gap loss

6.2.1a Thickness Loss

The particles at the surface of the tape which have reversals of magnetic direction link with the
reproduce-head pole pieces and generate a signal. Their neighboring particles within the depth of
the coating have their fields partly canceled by other nearby particles of opposite magnetization
which are also distant from the pole pieces. The influence of a given particle on the output
diminishes at 55 dB per wavelength of separation from the head. The thickness loss in decibels is

(6.2.1)

where d = depth of recording and λ = wavelength, in same units.

20 1 2πd λ⁄–( )exp–
2πd λ⁄

-----------------------------------------------log
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6.2.1b Spacing Loss

The surface of the tape is not perfectly flat. If it was, it would adhere to points of sliding contact
with disastrous results. Surface particles, therefore, vary in their distance from the pole pieces.
The loss due to this average separation in decibels is

(6.2.2)

where a = average spacing of surface particles and λ = wavelength, in same units.

6.2.1c Azimuth Loss

If the angle of the reproduce gap with respect to the direction of tape motion is different from the
angle of the recording gap, there is an additional loss. The loss in decibels is

(6.2.3)

Where:
θ = differential angle
W = track width
λ = wavelength, in same units as width

This loss can be severe, especially with wide tracks. Head assemblies are usually provided
with means to adjust the verticality of the gap. Typically, a reference tape made by a certified
supplier is reproduced and the azimuth angle of the reproduce head adjusted for maximum out-
put while reproducing a high frequency.

6.2.1d Gap Loss

When the recorded wavelength is equal to the gap length, the summation of the influence of the
magnetic particles within the gap is zero, and there is a null in response. For wavelengths longer
than the gap, the loss can be expressed as

(6.2.4)

where g = optically determined gap length and λ = wavelength, in same units.

20 2πa λ⁄–( )explog
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Gap loss is typically less than 6 dB. Compensation for this loss is often provided by resonat-
ing the head inductance with cable capacitance at a frequency well above the system’s upper
band limit. Alternatively, a dedicated circuit may be used to provide a rising response to cancel
the gap loss.

6.2.2 Long-Wavelength Effects

Except for the particular case of a circular head structure [1] at those low frequencies that pro-
duce wavelengths which approach the width of the head structure, undulations in response occur,
including reinforcement. These are known as head bumps. Making pole pieces of the head struc-
ture very wide tends to move the undulations below the audio spectrum. This, however, makes
the head a more efficient transformer, therefore increasing crosstalk with adjacent heads. There
is no easy electronic compensation for head bumps; thus, there is a range of tradeoffs between
crosstalk and low-frequency response.

6.2.2a Equalization

Equalization, the process of correcting deviations from uniform frequency response, is distrib-
uted between the record and reproduce circuits. In general, losses attributable to the reproduce
process are corrected in the reproduce circuits, and vice versa.

The major loss during reproducing is inversely proportional to wavelength for wavelengths
which are short compared with the tape coating thickness. If we assume a recording having uni-
form record current with frequency and no other losses, the system response is dominated by the
thickness loss. Thickness loss has been found to approximate the response of a simple resistance-
capacitance (RC) low-pass circuit. The reproduce system must therefore have an inverse
response, rising with frequency.

On the basis of measurements made on typical tape samples, a standard reproduce curve is
selected and promulgated by various standards organizations to effect tape interchange among
similar machines. The response at high frequencies is expressed in terms of an RC product, or
time constant. The reproduce-system response is given by Equation (6.2.5). Values range from
15 to 120 µs. Thicker tape coatings and slower tape speeds require the larger values.

Gain (dB) = (6.2.5)

In some systems, the low frequencies are boosted during recording and attenuated during
playback to reduce ac hum and other low-frequency noise. The associated inverse reproduce
response is given by

Gain (dB) = (6.2.6)

A typical RC value is 3180 µs. Where RC is nonzero, there is a frequency, usually between
400 and 1000 Hz, at which the influences of the two equalizations are equal and their sum is

10 1 2π fR1C1( )2
+[ ]log

10 1 1

2π fR2C2( )2
-----------------------------+

1–
log
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minimum. The frequency, given by Equation (6.2.7), is useful as a test frequency and is obtained
by equating Equations (6.2.5) and (6.2.6) and solving for B.

(6.2.7)

Figure 6.2.1 highlights the essential elements of a reproduce equalizer. At low frequencies the
impedance of the feedback path is predominantly capacitive, and the response of the amplifier
falls at 6 dB per octave, compensating for the rising frequency response of the head. At high fre-
quencies, the response of the amplifier is determined by the value of R and becomes flat. Figure
6.2.2 illustrates how the response of the head-tape interface and the reproduce equalizer comple-
ment each other.

Adjustment of reproduce equalization circuits may be accomplished in two ways. First, a ref-
erence tape prepared under laboratory conditions and containing several frequencies is repro-
duced and circuits adjusted for the most uniform response. Some reference, or alignment, tapes
are recorded full-width to avoid errors due to imperfect vertical positioning of heads relative to
the recorded tracks. Equation (6.2.8) in conjunction with Figure 6.2.3a will calculate the rise in
response due to fringing fields from the parts of the tape that are not ordinarily recorded upon.
Equation (6.2.8) is sufficiently accurate to correct for the rise in output at frequencies usually

f
1

2π
------ 1

R1C1R2C2
--------------------------=

Figure 6.2.1 Elements of a reproduce equalizer.

Figure 6.2.2 Complementary responses of the reproduce system and equalization.
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employed to set the playback-system gain. At longer wavelengths, the rise is more pronounced
and accuracy suffers.

Fringing gain (db) = (6.2.8)

where k = π frequency/velocity and W = head width.
Second, the desired reproduce response is calculated from Equation (6.2.5) and the inverse of

Equation (6.2.4). The head is excited by a small coil of wire driven by a test oscillator. The repro-
duce circuits are adjusted until the obtained response is most nearly equal to the calculated
response. Alternatively, a circuit having a response which is the inverse of the calculated
response can be interposed between the test oscillator and the coupling loop. The reproduce cir-
cuitry is then adjusted for flat response.

6.2.2b Noise

Noise is anything that appears at the output that was not present at the input and is not a function
of any of the input signals. Crosstalk and distortion products are not noise. Coherent interference
may be injected into the reproduce path either magnetically (coupled into the reproduce head) or
electrically (introduced into the reproduce circuitry). The usual source of coherent interference is
the ac power supply. Radiation from the power transformer into the reproduce head and coupling
of the third harmonic of the power line frequency into high-gain circuitry are typical sources.
Encasement of the power transformer in a surrounding enclosure of magnetic material is highly
recommended. AC motors may be shielded and/or rotationally oriented for minimum field radia-
tion in the direction of the reproduce head. The circuit path for ac motors should never share any
wiring or other element of the transport structure with the signal circuit.

Analog audio recorders in a television environment frequently experience interference from
the magnetic fields originating in the scanning yokes of television monitors. The vertical scan-
ning waveform is rich in harmonics which lie within the audio passband and is therefore difficult
to cancel. Only the fundamental of the horizontal scanning frequency is of interest. Shielding of
television monitors is difficult. The viewing end of the monitor cannot be obscured, and shield-
ing around the yoke tends to remove too much energy from the scanning yoke.

20 1
2 kd1–( ) kd2–( )exp–exp–
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-------------------------------------------------------------------+log
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Figure 6.2.3 Dimensions for (a) fringing-gain calculation and (b) crosstalk calculation.
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Random Noise

Unrelated to the recorded signal, random noise stems from several sources. The random distribu-
tion of magnetic particles in the tape is, ideally, the major source.

Electronic noise includes the thermal noise of the resistive component of the head windings
and the semiconductor junction noise in the preamplifier. If electronic noise is kept at least 10 dB
below tape noise, its contribution to the overall signal-to-noise (S/R) ratio will be limited to 1 dB
or less. Electronic noise in the preamplifier can be minimized by the following design steps:

• Locate the preamplifier as closely as possible to the reproduce head to minimize the capaci-
tance of the wiring to the head.

• Choose a head inductance as high as possible without having the inductance and associated
capacitance resonate too close to the upper band edge. Resonance at two or three times the
upper and edge is reasonable. This technique maximizes the number of turns of wire on the
head winding and therefore the induced voltage.

• Careful selection of a small-signal transistor. It should have low shot (1/F) noise at low fre-
quencies. Calculate the source impedance of the head at 6.3 kHz, approximately the fre-
quency of maximum sensitivity of the human ear. Choose the current through the transistor to
produce the minimum noise figure at the calculated source impedance. Avoid the use of bal-
anced (push-pull) designs which involve the use of two active junctions. Two junctions make
more noise than one.

The playback noise from a tape subjected to ac bias current, but no signal current, is usually
greater than that from a tape subjected to nothing. This effect can be minimized but not elimi-
nated.

6.2.2c Reproduced Crosstalk

The coupling of a magnetic track into a neighboring reproduce head is given by Equation (6.2.9)
in conjunction with Figure 6.2.3b.

Crosstalk (dB) = (6.2.9)

where k = π frequency/velocity and W = head width.
Equation (6.2.9) assumes no intertrack shield. Another source of intertrack crosstalk is the

magnetic coupling between the two head structures, similar to the relation between the primary
and the secondary of a transformer. The combination of these two effects is a wildly gyrating
function at low frequencies.

A degree of cancellation of intertrack crosstalk can be effected by injecting a small fraction of
the reproduced voltage of a channel into its neighboring ones in antiphase. The cancellation is
most effective in the middle range of frequencies.

20
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6.2.2d Circuit Design Considerations

The establishment of a point in an electrical system that may be considered as reference zero is
not trivial and is the subject of many books and learned papers. Audio-recorder designs tend to
establish a reference ground at the reproduce preamplifier. Another approach is to declare refer-
ence ground as the point of attachment of the power supply filter capacitors.

In all cases, the interference between circuits caused by currents developing voltages across
ground wires can be minimized by reducing the impedance of those wires. Ground pins on plug-
in circuit boards should be numerous. Ground interconnections should be massive, consisting of
either large-cross-sectional-area conductors or multiple wires of equivalent conductance.

With larger systems having longer interconnections, the use of balanced transmission on two
wires for each signal path is highly recommended, as it can bring significant reductions in con-
ductive crosstalk.

High-impedance circuits can suffer interference from nearby signals by capacitive coupling.
This form of interference can be diminished through the use of an electrostatic shield, one that is
conductive but not magnetic. Examples include aluminum shield cans, braided or wrapped
shields around wires, and metal enclosures.

Low-impedance circuits, especially the reproduce head and its wiring, can suffer from inter-
fering ac magnetic fields. Notable sources of interference include power supply transformers and
reel and capstan motors.

Sometimes it is necessary to attenuate the interference at the source; i.e., to enclose a motor in
a can made of magnetic material. The greatest source attenuation is achieved by encasing the
offending item in an inner shield of material which has moderate permeability but is capable of
sustaining fairly strong fields without saturating. The outer shield is then formed of a material
with very high permeability. Such materials tend to saturate even in moderate fields, but the
inner shield attenuates the field to a tolerable level.

Shielding of the reproduce head is difficult. It is obviously not possible to fully enclose the
head. The maximum practical shielding is obtained by mounting the head in a cup made of a
sandwich of Mumetal separated by copper. (See Figure 6.2.4.) A cap made of the same material
is formed to cover the cup. Small slots are cut in the cup to allow passage of the tape. The cap is
retracted to thread the tape but pressed against the cup in normal operation.

The wiring between the reproduce heads and the associated preamplifiers is especially criti-
cal. If the distance is more than a few inches, it would be wise to encase the wires in a tubular
magnetic (and electrostatic) shield. In any event the head wires should be tightly twisted.

6.2.3 Audio Recording Process

For virtually all applications, the audio signal to be recorded is mixed with a supersonic single-
frequency ac signal prior to being coupled to the record head. It is important to understand that
the addition of bias is strictly linear. No modulation is intended, and no multiplicative products of
modulation are needed or desired.

Figure 6.2.5 shows how the spectrum of noise due to the granularity of the magnetic particles
in the surface of the tape is distributed around the bias frequency. The lower skirt of the spectrum
invades the audio spectrum. This explains the commonly observed difference between noise
measured from virgin bulk-erased tape and noise measured from tape which has been biased
(and recorded) with zero signal. Increasing the bias frequency will reduce the magnitude of
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biased noise slightly. Obtaining adequate bias and erase currents at reasonably low voltages is a
problem at high bias frequencies.

The erase frequency is usually equal to the bias frequency. Sometimes it is less. If so, it
should be an odd submultiple of the bias frequency.

(a)

(b)

Figure 6.2.4 High-quality head shield: (a) side view, (b) top cross section.
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If too low a bias frequency is chosen, then the recording of high-amplitude, high-frequency
signals will, in a process akin to phase modulation, generate a family of sidebands spaced at N
times the signal frequency above and below the bias frequency, where N is an integer. Figure
6.2.6 illustrates how these artifacts can intrude into the audio passband. The effect is easily heard
by recording a high-amplitude sine wave of rising frequency and listening for descending tones
upon playback. A bias frequency at least 7 times but not more than about 20 times the highest
frequency to be recorded is reasonable.

Figure 6.2.7 shows the relation between bias amplitude and the remanent audio signal. Note
that the high-frequency, short-wavelength signal reaches a maximum at a lower bias current than
the long-wavelength signal. The bias field is strongest at the surface of the tape and diminishes
as it penetrates the thickness of the tape coating. The particles contributing to low-frequency out-
put include some near the surface, which are overbiased, and some within the depth of the
recording, which are underbiased. The particles responsible for high frequency response are con-
fined to the surface and are all overbiased.

Operationally, bias current is adjusted by recording a moderately high-frequency signal, pro-
ducing a wavelength which is short compared with the thickness of the tape coating. The bias
amplitude is slowly increased until the audio output reaches a maximum, then decreases by an
amount prescribed by the manufacturer. This method is adequately sensitive and is designed to
result in a minimization of distortion at low and medium frequencies. In the particular case of
thick tape coatings and record heads having a gap length approaching the coating thickness, a
sharp reduction in distortion can be obtained by careful adjustment of bias amplitude.

Figure 6.2.5 Intrusion of the bias noise spectrum.

Figure 6.2.6 Alias interference due to large distortion products.
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Some recorders which have separate record and playback heads offer automatic bias adjust-
ment. Two built-in test oscillators, one at a low frequency and the other near the upper band edge,
are mixed in a known ratio and injected into the record path. A playback circuit examines the
ratio between the reproduced tones and adjusts the bias amplitude until the correct ratio is
achieved. The adjustment value is stored in nonvolatile memory.

6.2.3a Measurement of Record Amplitude

The choice of a “normal” recording level is a careful tradeoff between noise and distortion. A
tape recorded consistently at too high a level of magnetization will exhibit excessive and perhaps
noticeable odd-order harmonic distortion. If recorded at too low a level, the S/N will be
degraded. A typical normal analog record level is 8 or 9 dB below the level resulting in 3 percent
third-harmonic distortion.

Two methods of signal-level measurement are used, sometimes together. The volume-unit
(VU) meter, standardized in the U.S., indicates decibels above 1 mW across a 600-Ω line. The
ballistics of the meter are closely specified and controlled to obtain repeatable results. The meter
is limited in its ability to respond mechanically to very short signal peaks. Use of this meter to
adjust loudness dynamically results in occasional bursts of high distortion depending on the pro-
gram content but in a relatively constant S/R.

Figure 6.2.7 Influence of bias amplitude.
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In Europe and on many consumer products, metering of the record level is done with a peak-
reading instrument consisting of a fast-charge-slow-discharge circuit driving either a conven-
tional meter movement or a linear array of light-emitting diodes. This display method indicates
instantaneous peaks of amplitude long enough for one to see and react to them. Use of peak-
reading instruments tends to produce a constant maximum distortion level and an S/R ratio
which varies according to the program content.

6.2.3b Distortion Reduction

The only distortion products which should be detectable at the output of a properly designed and
maintained tape recorder are the odd-order harmonics of the signal frequency. The predominant
harmonic is the third. The absolute amplitude of the harmonic is closely proportional to the cube
of the amplitude of the recorded signal. The sign of the harmonic is such that the peak amplitude
of the signal is reduced. The limiting case is that of a totally overdriven system with a sine-wave
input and a square-wave output.

One technique to make the system more linear is to create, in the recording process, odd-
order distortion of the opposite sign and add it to the signal to be recorded, thus canceling in
advance the effects of the inherent distortion produced by the magnetic medium. Called predis-
tortion, this technique is presented in Figure 6.2.8, which shows ways to approximate the desired
function.

Figure 6.2.8 Common circuits for amplitude predistortion; X = four-quadrant multiplier.
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The recording process also introduces delay distortion, the nonuniform time response to the
various frequencies in the input spectrum, brought about by the interaction of the longitudinal
and vertical components of the recording field. This effect may be compensated for by introduc-
ing delay distortion of the opposite sense. Figure 6.2.9 shows a second-order all-pass circuit
which will partially compensate for the delay distortion. As in the case of amplitude predistor-
tion, there is no reason other than economics that delay distortion correction must be accom-
plished in the record process. The easiest but not necessarily best way to establish circuit values
in a phase predistorter is to determine experimentally the values which result in the best square-
wave response at midrange frequencies; i.e., 500 to 2000 Hz.

6.2.3c Record Equalization

Most recorders have at least one adjustment in the record path to set the frequency response at
the upper end of the spectrum. In simple consumer recorders, a single RC variable boost usually
suffices. Professional mastering recorders have as many as four, including adjustment of low-fre-
quency response. Record equalization is always set after setting reproduce response and after set-
ting bias amplitude in order to achieve the flattest overall system response.

6.2.3d Record Crosstalk

The degree to which a record signal is also recorded, in part, on an adjacent track depends on
whether the adjacent track was also being recorded upon at the time. If a bias field is present on
the adjacent track, that track is most sensitive to the presence of leakage flux from its neighbor.
Two paths exist for introducing one signal path into another. The first magnetic path extends
from the face of the record head into the face of the neighbor. The other path is the transformer
coupling between the two heads within the structure of the head assembly. Transformer coupling
can be greatly reduced by the introduction of interchannel magnetic shields.

Record crosstalk may be partially canceled by injecting into each neighboring channel's
record path a fraction of the record signal in antiphase. The cancellation signal is frequently
passed through a circuit which varies its amplitude and phase as a function of frequency. Gener-
ally the adjustments are critical, and generally the cancellation is effective only over the
midrange frequencies, roughly 500 to 5000 Hz.

Figure 6.2.9 Second-order delay correction circuit.
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6.2.3e Circuit Design

Analog consumer recorders typically have rather simple input circuits. The input cable is usually
a single shielded conductor with the shield connected to ground. While this is adequate when the
signal source is a meter or two away, professional recorders may be operated with sources which
are tens of meters removed. To avoid introducing interfering signals due to currents in the ground
paths, professional recorders usually have a balanced input with bipolar signals symmetrical
about ground. The input device is sometimes a transformer, but better rejection of common-
mode interference can be gained with an operational amplifier with one or two adjustments to
maximize common-mode rejection (CMR). Figure 6.2.10 shows a typical circuit. The potenti-
ometer adjusts CMR at low frequencies, and the variable capacitor minimizes CMR at high fre-
quencies.

Two methods of adding the bias signal to the audio are in common use; Figure 6.2.11 shows
both. In one, the bias-generator output is added to the audio record-amplifier output by using
passive components. In the other, the bias is added at the input to the record amplifier, which
must be designed to have the bandwidth and output-amplitude capability to amplify the mixture
without distortion.

The design of the bias source is critical. The bias current must be free of even-order distortion
and must be spectrally pure. Even-order distortion will result in even-order distortion of the
audio signal and in increased tape noise. Spectral impurity will result in increased modulation
noise; i.e., noise which occurs only in the presence of a signal.

Additionally, in recorders used for editing, the bias and erase signals are turned on and off
slowly to prevent clicks, pops, and thumps at the edit point. It is important that the bias and erase
waveforms remain free of even-order distortion during the turn-on-turn-off period.

The following record controls may be found in record electronics, usually repeated for each
channel:

• A user-adjustable front-panel record level control that compensates for the variation in level
at the input terminals.

• Calibration control to adjust the sensitivity of the record level display device.

• Record equalization control to set the overall frequency response to maximum flatness.

• Bias amplitude. Cassette recorders and less expensive reel-to-reel machines often provide a
single bias adjustment, with the different amplitudes required by different tape formulations
being set by a resistive voltage divider using fixed components. Professional machines usu-
ally provide separate adjustments for each tape type and an adjustment for erase amplitude as
well.

Figure 6.2.10 Differential-input amplifier circuit.
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• If the recorder is equipped with one or more noise reduction circuits, there is usually a record
calibration control which is set to produce a standard level at the input to the noise reduction
circuit. Another record calibration control is used to establish the desired tape flux at the stan-
dard input level.

6.2.3f Editing

Where the tape is accessible, the end of one passage may be mechanically joined to the begin-
ning of the next by cutting the two tapes at the appropriate points, abutting the two ends, and
securing them with adhesive tape on the nonoxide side of the tape. The cutting is done in a jig
with a groove equal to the width of the tape. The two tapes are put in the groove and overlapped.
The cut is always made through both layers at once, assuring a precision fit. Usually, a diagonal
cut is made to spread the effect of the splice over a period of time, producing a cross-fade of sorts
between the two signals.

When the finality of a mechanical splice is too risky or when there is a multi-track recorder
on which some tracks need editing and others must be retained, electronic editing is used. When
the record command is issued, the erase current is ramped up over a period of 5 to 100 ms. Later,
when the beginning of the erased tape reaches the record head, the bias current and audio signal
are ramped up over a similar time. When recording is terminated, the procedure is reversed, with
the erase being ramped down first. Figure 6.2.12 shows the timing and resulting effect. The on
and off delays are different for bias and erase, different for ramping up and ramping down, and
different for each tape speed. To avoid holes in the recording at either the start or the end of the
edit, each of the delays is, in some machines, made adjustable.

Figure 6.2.11 Two common bias-addition methods.
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In some applications, as when the sound in a movie being filmed is magnetically recorded, it
is necessary to assure that the tape recorder plays back at precisely the same speed used during
recording even when the tape has shrunk or stretched. An early method of doing this was to
record a narrow track of a single reference frequency in the guard band between two tracks. The
frequency was derived either from the ac power line, if the camera was equipped with a synchro-
nous motor, or from an ac generator attached to the camera drive shaft. During playback, the
reproduced reference signal was compared with the reference and the speed of the recorder con-
trolled to cause their frequencies to be the same.

Early recorders used synchronous ac motors, and speed was controlled by driving the motor
with a power amplifier driven with a variable-frequency oscillator. In more modern machines,
the capstan is driven by a dc motor having a tachometer disk on one end of its shaft. Speed is
controlled by comparing the tachometer frequency with a suitable variable-frequency generator.
A typical nominal tachometer frequency is 9600 Hz. In both of the schemes outlined here, initial
synchronism is achieved manually and maintained by the servo system thereafter.

A digitally encoded time and control code suitable for recording was developed under the
auspices of the Society of Motion Picture and Television Engineers (SMPTE) [2]. The code is
also supported by the European Broadcasting Union (EBU) [3]. Time is expressed, using two
binary-coded decimal digits per 8-bit byte, as hours, minutes, seconds, and television or film
frames and is iterated once each frame. A total of 80 binary bits are recorded per frame; 16 bits
provide synchronism and direction sense, 32 are used to express time, and another 32 are avail-
able to the user for any purpose. This signal is very useful in a television environment and is
employed in situations in which audio is recorded separately from video or the audio of a televi-
sion program is to be separately manipulated before broadcast. The time code is recorded either
on one track of a multichannel recorder or on a narrow track between two audio tracks

A synchronizer is either an external electronic device or a plug-in accessory circuit board to a
recorder which compares time codes replayed from a master recorder and from a slave repro-
ducer, and controls the capstan of the slave to maintain the difference between the two time codes
at zero or some desired fixed offset. In this way, the slave, usually an audio reproducer, and the

Figure 6.2.12 Erase and bias on-off timing.
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master, usually a video recorder, are kept in synchronism. Unlike earlier rate-only servos, syn-
chronizers can both attain and maintain synchronism.

Editing systems which control numerous video and audio recorders and video and audio
switchers and mixers have been devised and are in common usage. All make use of the SMPTE-
EBU time code to determine the relative time position of video and audio program materials and
to control the various machines presenting those materials.

The rehearsal of proposed edits, the accumulation of a list of edits within a program, and the
generation of a master tape conforming to the edit decision list are typical features of these sys-
tems.

6.2.4 Mechanical Considerations

The essential elements which may be mounted on the frame are shown in Figure 6.2.13. If the
elements are intended to be mounted vertically, as in an equipment rack, the mounting method
must isolate planar irregularity of the rack from the frame. If vertical or horizontal mounting is
intended, the bending of the frame due to the weight of the components mounted upon it must be
calculated and determined to keep the plane of the mounting surfaces adequately flat. The frame,
in its simplest form, is a sheet of rolled metal. In its most complex form, it is a casting with deep
webs to increase stiffness.

In large recorders, some of the electronic elements may be mounted directly on the frame.
These are mostly circuits which benefit from short wiring or which are electronic sensors of
mechanical elements. Included are playback preamplifiers, motor-drive amplifiers, optical
tachometer sensors, tension arm-deflection sensors, and solenoids which move some of the
mechanical elements.

6.2.4a The Tape Path

The purpose of the elements shown in Figure 6.2.13 is to keep the tape under tension while mov-
ing it across the head assemblies. The supply reel, whether driven by a separate motor or by a
friction clutch, supplies torque in the direction opposite to normal tape travel. In the play mode
and the fast-forward mode, this maintains tape tension. In the rewind mode, it serves to acceler-
ate the tape and the takeup reel, and return the tape to the supply reel. The takeup reel, in a like
manner, supplies torque in the forward direction.

In friction-drive systems and those with ac motors, the torque applied to the reels is relatively
constant, causing the tape tension to vary with the diameter of the tape pack. For this reason, the
ratio between full and empty reel diameter is usually restricted to 2.5 or 3: 1.

In friction-driven reel systems and in separate-motor systems with unipolar motor-drive
amplifiers, the torque is always in the direction shown. In larger recorders, especially those
which handle large reels of wide tape, the motor-drive amplifiers are often bipolar. This allows
the motor to aid in the acceleration of a reel rather than depend on the increased tension on the
tape to do it alone. Quick response to rewind and fast-forward commands can thus be obtained
while restricting tension transients in the tape. Tension transients are often the cause of tape
cinching, shown in Figure 6.2.14. This occurs when the outside of the tape pack rotates in respect
to the inner part.
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The supply and takeup reels are usually supplied with frictional brakes even if these are used
only in the event of power failure. Figure 6.2.15 shows how an active element, a solenoid, is used
to hold the brakes off so that power failure will result in brakes on. The springs at each end of the
brake band are unequal, resulting in the greater braking force being applied to the unwinding
reel. This maintains tension even when the system stops in the absence of power.

The braking force is the product of the spring force and the capstan effect, a multiplicative
parameter which reflects the tendency of things wrapped around a spindle to tighten further. The
effect is a function of the coefficient of friction and the wrap angle (in radians) and is given by

(6.2.10)

Where:
To = output tension
Ti = input tension
e = 2.71828

 = coefficient of friction
 = angle of wrap, rad

To

Ti
----- e

µφ
=

µ
φ

Figure 6.2.13 The essential elements of a tape transport.
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The effect is a function of the angle of wrap. It is overwhelming in nautical applications, in
which a few turns of rope can multiply the holdback force of a sailor by millions. The angle of
wrap of tape around the nosepiece of a head is so small as to seem negligible but, when multi-
plied by (not summed with) the effect of each wrap around each frictional element that the tape
encounters, can result in a ratio of output tension to input tension approaching 2:1. The coeffi-
cient of friction of typical tape against typical polished metal surfaces ranges between 0.2 and
0.3 when the tape is in motion and about twice that when it is stationary.

Figure 6.2.14 Cinching, or interlayer folding of tape in winding.

Figure 6.2.15 Tension brake operation.
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Depending on tension and the surface roughness of the tape, there is a tape speed (approxi-
mately 5 in/s) above which friction is reduced somewhat. It results when the air film between
tape and guide exceeds the roughness of the rubbing surfaces.

Supply and takeup tension arms, in simple systems, serve only to supply some tape to the
head assembly upon start-up while the supply reel accelerates. This diminishes the tension tran-
sients associated with starting and stopping tape motion. In more complex systems, the position
of the tension arms is sensed and used to regulate the torque applied to the associated reels.

Variations in holdback torque due to motor cogging or to an off-center tape pack on the reel
will tend to vary the tension (and therefore the elongation) of the tape and thus result in varia-
tions in tape velocity at the playback head. The supply idler suppresses this tendency by coupling
the tape to a rotating member having high inertia, thus tending to isolate the tape motion at the
head from disturbances at the supply reel.

The inertia of the idler is a compromise. Too much, and the time from the beginning of play to
stable speed is excessive, as the tape slips over the idler until the idler is fully accelerated. If there
is too little inertia, the isolation is insufficient.

In some film transports, the idler is given a jump start (by independent means) at the begin-
ning of the play cycle instead of depending on the film to accelerate the idler. This minimizes the
time between the start of the play mode and stable motion.

The difference between stationary friction and moving friction gives rise to the stick-slip (or
violin-string) phenomenon, also called scrape flutter. The effect is most pronounced when the
span of tape between stationary frictional elements is relatively large, as in professional trans-
ports. In the case of tapes improperly stored so that the plasticizers and lubricants have evapo-
rated, the effect can be so pronounced as to render the tapes unusable.

The flutter idler helps to diminish the high-frequency flutter component associated with
scrape flutter by lightly coupling the tape to an inertial element. The roundness of the idler and
the quality of its bearings (usually jeweled) are important, as any deviations from uniformity will
directly perturb the tape motion. The angle of contact is usually small, on the order of 1 or 2
degrees.

Contact of the tape and the erase, record, and playback heads is assured by having the tape
subtend a total angle over the nose of the head on the order of 10 to 16 degrees. This is shown in
Figure 6.2.16. In consumer-grade cassette recorders, contact is assured by a felt pad which
presses the tape against the head.

The tape-path element which determines the absolute speed of the tape is the capstan. In some
designs, the capstan is coated with a plastic having a high coefficient of friction, and the wrap
angle is high, 90 to 270 degrees. Reel servos are used to maintain relatively constant tape tension
so as to restrict the work done by the capstan. This limits the possibility of slippage of the tape
over the capstan.

In typical designs, a manual or solenoid-operated rubber roller presses the tape against a steel
shaft. Figure 6.2.17 shows two circumstances. In the first, the roller is narrower than the tape. In
this case, the tape speed must be calculated by using the radius of the capstan shaft plus one-third
of the thickness of the tape. In the second case, it must be assumed that the coefficient of friction
of rubber and tape is greater than that of steel and tape; thus the capstan drives the roller, and the
roller drives the back side of the tape, while the front side of the tape slips over the shaft. The
rolling radius of the roller depends upon its elasticity and the pressure against the shaft. It is a
complex relationship usually best resolved by measurement.

Measurement of absolute tape speed can be approximated by reproducing a flutter-measure-
ment tape and measuring the reproduced frequency, typically 3000 Hz, nominal. The percentage
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by which the frequency deviates from 3000 Hz is the percentage by which the tape deviates from
the design value.

The takeup arm serves much the same purpose as the supply arm, isolating the capstan from
transients produced at the takeup reel.

6.2.4b Capstan and Reel Servos

Figure 6.2.18 shows, in schematic form, the operation of a reel servo. The tension arm is fitted
with a spring, which determines the tape tension. The position of the arm is sensed by a potenti-
ometer (or other means). Any deviation from the desired deflection of the arm causes the motor
torque to be adjusted so as to reduce the deviation toward zero. In some designs, any tendency to
oscillate is damped by a dashpot, a piston in a cylinder with a leak. The leak is often adjustable.
Usually, servomechanisms are applied to both supply and takeup reels.

The frequency response of the reel-servo system must take into account the resonant systems
formed by the inertia of the reel and motor, the spring constant of the tension arm, the mass of
the arm, the modulus of elasticity of the tape, the length of tape between the reel and the supply
idler (or capstan), and the moment of inertia of the idler (or capstan). Considerable insight into
the performance of a proposed design can be gained by modeling the mechanical components as
electrical elements and using one of the many computer programs designed to analyze the
response of electrical circuits.

A capstan servo is a rate servo, in which the rotational rate of the capstan is compared with a
reference frequency and any deviation from the reference rate causes an increase or decrease in
capstan speed, so as to tend to reduce differences in rate to zero. The capstan shaft is fitted with a
tachometer disk, usually optical, which generates a frequency, typically 9600 Hz, at normal play
speed. The capstan tachometer frequency is compared with a reference derived from a crystal or
the scanning frequency of a television system. The result of the comparison varies the current to
the capstan motor so as to maintain phase coherency of the tachometer and the reference. While

Figure 6.2.16 Head-to-tape contact by wrap.
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this guarantees a constant rotational rate of the capstan, it does not cause a precisely repeatable
tape speed, since the dimensions of the tape can change with time.

To maintain time coherency with another device, typically a film or television camera, it is
necessary to record, on the audio transport, a signal derived from the motion of the film camera
or the scanning rate of a television camera. During replay, the film or TV rate is compared with
the replay of the record, and any tendency to depart from phase coherency is caused to vary the
capstan speed so as to diminish that tendency toward zero. In this way, audio recorded separately
from video can be reproduced in lip synchronism.

(a) (b)

Figure 6.2.17 Capstan pinch-roller relationships: (a) capstan moves tape, tape moves roller; (b)
capstan moves roller, roller moves tape.

Figure 6.2.18 Simplified reel-servo arrangement.
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6.2.4c Sources of Flutter and Wow

There are a number of potential sources of flutter and wow in an analog audio tape recorder.
Some of the more common include the following:

• Variations in the supply-reel/takeup-reel torque, caused by motor cogging, poor ball bearings,
out-of-round mounting of the turntable, dragging brakes, out-of-round tape pack, or the
scraping of bent reel flanges against the edges of the tape. The effect of these variations is
reduced by the inertia of the supply/takeup idler and by the effect of the reel servo, if present.

• Out-of-round tension arm idlers or bad ball bearings. These effects tend to be diminished by
the inertia of the supply/takeup idler and possibly by the reel servo, depending on frequency.

• Out-of-round supply/takeup idler or bad bearings thereon. These will not be much diminished
by the reel servo.

• Scrape flutter in the absence of a scrape-flutter idler or out-of-round condition in the presence
of one. This is not diminished by servos.

• Out-of-round capstan. This is undiminished by servos.

• Off-center mounting of a tachometer disk to the capstan shaft. This condition will cause the
servo to generate perturbations at the once-around rate.

• Bad bearings in the capstan or pinch roller. These will be diminished by a capstan servo
depending on ball size (frequency) and the response of the servo.

• Vibration of portable recorders, especially angular vibration in the plane of the reels. This
effect is diminished by servos, but since all rotating elements are involved, it is very easy to
overload some servo systems by exposing them to excessive vibration. Some cassette designs
are equipped with counterrotating inertial elements which are designed to cancel the angular
acceleration induced by a running person.

• Slippage of the tape over the capstan due to insufficient pressure of the pinch roller or, in a
pinch-roller-less design, due to the debris which has attached itself to the somewhat tacky
plastic capstan surface, thus giving it a reduced coefficient of friction.
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Chapter

6.3
Analog Recording Formats

E. Stanley Busby

6.3.1 Introduction

A wide variety of analog audio recording formats have been developed over the years to satisfy
specific needs and applications. This chapter provides the basic specifications of the most com-
mon systems. Although many of the formats documented here are no longer used in a modern
audio facility, these formats are important for the audio professional if for no other reason than
preserving archived materials.

In the sections that follow, track-width dimensions shown are for the recorded tracks. Where
erase heads are separate, it is usual practice for the head width of the erase gap to be 0.010 to
0.020 in wider than the track width to assure full erasure on an interchange basis. Similarly,
where reproduce heads are separate, it is typical for their gaps to be 0.005 to 0.010 in smaller
than the track width to assure constant output with variations of tracking accuracy.

6.3.2 Two-Track Cassette System

In terms of the number of manufactured recorders, the 0.150-in-width two-reel cassette is
undoubtedly the most popular analog audio format ever designed. These cassettes can be found
in automobile dashboards and are worn by joggers in the park.

In the simplest form, there are two monophonic tracks, one to each side of the centerline of
the tape. When one side is completed, the user removes the cassette, flips it over, and plays the
second side over the same head used for the first side. The same method is used on simple ste-
reophonic recorders. Figure 6.3.1a illustrates the monophonic case, and Figure 6.3.1b the stereo
case.

Many recorders, especially automotive installations, offer an autoreverse feature. When the
first side of the tape has been completed, the physical end of the tape is sensed, the capstan is
reversed, and play in the opposite direction begins.

In some machines, the single head or single stereo pair of heads is moved downward until it is
in the position shown at the bottom of the tape in Figure 6.3.1a and b. In other implementations,
separate heads or head pairs are provided for the reverse direction, with electronic switching
choosing the proper head or heads.
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In monophonic applications requiring long playing time, such as talking books, it is typical to
use the stereo format to squeeze four separate tracks onto one tape. The reproducer must have a
left-right balance control capable of reducing the output of each channel to zero.

The eight-track cassette format is shown in Figure 6.3.1c.

(a)

(b)

(c)

Figure 6.3.1 Cassette formats: (a) monophonic recording tracks, (b) stereophonic recording
tracks, (c) eight-track recording tracks.
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6.3.3 Reel-to-Reel Formats

The number of these formats is quite large, for it includes a wide range of tape widths, with each
tape width supporting a number of tracks.

The simplest of the 1/4-in formats is called full track. A monaural format, it is shown in Fig-
ure 6.3.2. Capable of superlative performance, it is used mostly in monaural amplitude-modula-
tion (AM) and shortwave broadcasting. An early stereo format which also supports two
independent channels (as in the case of two languages) is shown in Figure 6.3.3. The spacing
between the two tracks provides adequate isolation. This format also allows for a monaural
implementation in which the tape is flipped over to play the second side, similarly to the way in
which cassettes are played. In this case, the lower of the two heads shown in Figure 6.3.3 may be
omitted. When this format is used for recording stereo associated with a film or videotape
recording, it is customary to record a neo-pilot-tone or time code on two very narrow (about
0.016-in) tracks which are very close together and located so as to straddle the centerline of the
tape width. The two heads are located in a separate head stack and are driven in antiphase to
reduce crosstalk to negligible proportions.

A European stereo-only format is depicted in Figure 6.3.4. This format makes a tradeoff
between increased channel crosstalk, which is allowable in a stereo system, and a better S/N
resulting from the wider track width.

A bidirectional stereo format is shown in Figure 6.3.5. As in the case of the cassette format, a
particular implementation may furnish only the heads identified by the right-pointing arrows,
requiring the user to flip the tape reel midway, or it may furnish all four heads for use on
machines equipped with autoreverse mechanisms. Prerecorded music using this format has a
sliding low-frequency tone ranging from 15 to 20 Hz recorded at the end of the first side.

The 1/2-in stereo master format, used in recording studios and for other professional applica-
tions, is shown in Figure 6.3.6. The wide tracks provide very low noise. This format, usually

Figure 6.3.2 1/4-in full-track recording format.
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operated at 15 or 30 in/s, is often used to convey the final two-channel mix-down of an audio
production.

A few quadraphonic tapes were published toward the end of the popularity of this format. The
appropriate format drawing is Figure 6.3.7. Figure 6.3.8 shows another four-channel implemen-
tation, but using 1/2-in tape. Aside from general multitrack recording, this format is often used
as the master tape to be copied onto the cassette stereo format. In this case two stereo pairs are
copied at once, one in reverse. Both the 1/2-in reproducer and the cassette recorder are operated

Figure 6.3.3 1/4-in two-track-half-track format.

Figure 6.3.4 1/4-in stereo-only format.
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at a high speed, usually an integer multiple of normal play speed. By these two means, copying
time is minimized.

The 1/2-in four-track format was simply repeated, as shown in Figure 6.3.9, to provide an
eight-track 1-in format. The first use of a multitrack recorder to allow a single performer to per-
form several different parts was on an eight-track 1-in recorder used by the performers Les Paul
and Mary Ford. Using the record head as a reproduce head, the performer, listening with head-
phones, was able to maintain tempo while recording another part onto another track.

The number of tracks was increased by the use of 2-in-wide tape, already a popular tape width
for early video recorders. The two format drawings are Figures 6.3.10a and b. While the typical

Figure 6.3.5 1/4-in bidirectional stereo format.

Figure 6.3.6 1/2-in stereo-master format.
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tape speeds of multitrack recorders are 7.5, 15, and 30 in/s, all offer variable-speed reproducing,
and some allow small deviations in record speed.

6.3.3a Audio Recording on Video Recorders

Video recording formats typically provide for two to four associated audio tracks. Analog
recording, for the most part, uses the same methods as with audio recorders, with the tracks
located at or near the edges of the tape. One audio track is usually dedicated to the recording of
the time code. Similar technology is used to record the control track, which is essentially a record
of the phase position of the rotating video head assembly. Recorded on another longitudinal

Figure 6.3.7 Quadraphonic format.

Figure 6.3.8 1/2-in four-channel or four-track stereo-master format.
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track, the playback control-track signal is compared with the phase position of the video head,
and any difference is used to control the capstan so as to reduce the difference.

Video recorders use very short wavelengths for the video channel, so there is nothing to be
gained by using thick tape coatings. Video tapes therefore have thin coatings. This causes the 3-
dB frequency of the reproduce equalization curve to be higher than in an equivalent audio-only
application. It also reduces the output available at the reproduce head, which, coupled with the
many sources of magnetic pollution on a video recorder, makes the control of induced noise dif-
ficult.

Digital video recorders use even shorter wavelengths than analog recorders. Tape coatings are
about half the thickness of analog video tapes (about 100 µin).

6.3.3b Overview of Format Developments

Many more tape formats exist or have existed than are described here. Early stereo research and
demonstrations used a three-track format on 1-in tape or coated 35-mm film. There are a few
machines offering eight tracks on 1/4-in tape and 12 or 16 channels on 1 -in tape. One long-dura-
tion recorder used a rotary disk having four heads around its periphery. It recorded narrow tracks
transversely across 3-in-wide tape. The method is quite similar to that used on the first 2-in video
recorders. The recording time was on the order of 24 h. Before the advent of the cassette
recorder, a magnetic-disk recording system called a mat recorder was devised to differentiate it
legally from a reel-to-reel recorder. Music was recorded in a fashion similar to the vinyl disk, in
a spiral track, on a round, about 0.005-in-thick, flat magnetically coated substrate. Developed in
response to certain union rules, this system suffered a quick demise.

In addition, a large number of recording formats have evolved for magnetically coated film.
Film widths range from 8 to 70 mm and include 16-, 17.5-, and 35-mm film widths. Track usage
is twofold: magnetically striped film, which also contains an optical image; and magnetically
coated film totally devoted to audio recording.

Figure 6.3.9 1-in eight-track format.
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Many of the formats are maintained only by manufacturers who supply replacements for
worn-out heads. These manufacturers are the best source of data relating to supported formats.

(a)

(b)

Figure 6.3.10 Typical 2-in multitrack formats: (a) eight-track, (b) 24-track.


