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Chapter

2.1
Signals and Spectra

Douglas Preis

2.1.1 Introduction

Signals serve several purposes in audio engineering. Primarily, they carry information; for exam-
ple, electrical analogs of music or speech or numerical data representing such information. Dis-
crete-time signals, formed from sampled values of continuous signals, are now used extensively
in digital recording, processing, storage, and reproduction of audio signals. Signals devised and
used solely to elicit a response from an audio system are called test signals. Control signals mod-
ify the internal operation of signal-processing devices. Certain signals, such as electronic ther-
mal noise, magnetic-tape hiss, or quantization noise in digital systems, may be present but
unwanted.

Essential to a deeper understanding of all kinds of signals is the spectrum. The spectrum is
defined in slightly different ways for different classes of signals, however. For example, deter-
ministic signals have a mathematical functional relationship to time that can be described by an
equation, whereas nondeterministic signals, such as noise generated by a random process, are not
predictable but are described only by their statistical properties. Their spectra are defined in dif-
ferent ways. There are also two types of deterministic signals, classified by total energy content
or average energy content; and, again, their spectra are defined differently. All spectral represen-
tations provide information about the underlying oscillatory content of the signal. This content
can be concentrated at specific frequencies or distributed over a continuum of frequencies, or
both.

2.1.2 Signal Energy and Power

A deterministic, real-valued signal f(t) is called a finite-energy or transient signal if

(2.1.1)

where t is time. The integrand f 2(t) can be interpreted as the instantaneous power (energy/time)
if f(t) is assumed to be a time-varying voltage across a l-Ω resistor. The numerical value of the
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integral in Equation (2.1.1) is the signal's total energy. A finite power deterministic signal satis-
fies

(2.1.2)

That is, the average energy per time or average power is finite. For example, f(t) could be a con-
stant dc voltage existing for all time across a 1-Ω resistor.

Fundamental to understanding spectral analysis is an elementary periodic signal, that is, one
that oscillates with constant frequency and does not decay as time progresses. This simplest
oscillating signal is called a sinusoid. It predicts, for example, the motion of a swinging pendu-
lum (without friction) or the exchange of energy between inductor and capacitor in a lossless res-
onant circuit. The sinusoid is the solution to a differential equation that describes a wide variety
of physical oscillatory and vibrational phenomena.

2.1.2a Sinusoids and Phasor Representation

The sinusoidal signal illustrated in Figure 2.1.1a and described mathematically by

(2.1.3)

is a finite-power signal characterized by its real amplitude A, radian frequency, ω rad/s, and θ,
which is a constant phase angle (in radians). The quantity ω/(2π) is the cyclic frequency or num-
ber of oscillations per second, called hertz, and equals the reciprocal of the sinusoid's period T,
the time taken for one full oscillation. These relationships are illustrated in Figure 2.1.la.

The peak, or maximum, value of the signal is A. Its root-mean-square (rms) value found from
taking the square root of the expression in Equation (2.1.2), is , and the
average value of |f(t)| over one period is 2A/π = 0.6366A. The average power, from Equation
(2.1.2), equals A2/2. or simply the rms value squared. By appropriately changing the phase angle
θ, a pure cosine wave or sine wave is realized. For example, θ = 0, π/2, π, 3π/2, 2π corresponds to

, , , , respectively. If the phase of a sine wave is
increased by π/2 (that is, 90° positive phase shift or phase lead), it becomes a cosine wave. A
phase shift of π rad, or 180°, inverts the polarity of a sinusoid.

By using the Euler identity,

(2.1.4)

where . f(t) in Equation (2.1.3), can also be written as the real part of a time-varying
complex number (phasor), namely

(2.1.5a)

A conceptual picture of Equation (2.1.5a), called a phasor diagram, is given in Figure 2.1.1b. The
tip of the arrow describes the locus of points in the complex plane of the expression in brackets
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in Equation (2.1.5a) as the arrow itself rotates counterclockwise with angular velocity ω rad/s. As
time progresses, the projection (or shadow) of the arrow's length A onto the horizontal (real) axis
has the values A cos (ω t + θ). By convention, the phasor diagram is drawn when t = 0 or, equiv-
alently, showing the phase θ of the sinusoid relative to a cosine reference phasor, cos (ω t), which
would lie on the positive real axis. Note that multiplication of this phasor by e jψ advances its
phase by ψ rad, as can be shown by using Equation (2.1.5a). For example, multiplication of the
phasor by j = e jπ/2 advances its phase by π/2, or 90°.

The phasor concept can be extended on the basis of the following two identities derived from
Equation (2.1.4)

(2.1.5b)

and

(2.1.5c)
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Figure 2.1.1 Sinusoid characteristics: (a) sinusoid , (b) phasor diagram representa-
tion of sinusoid.

A ωt θ+( )cos
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where the negative signs in the exponents are associated with ω, implying negative angular
velocity . Thus, cos (ω t) and sin (ω t) in Equation (2.1.4) each can be interpreted simply as a
sum of two counter-rotating phasors, as shown in Figure 2.1.2. On the left side of this figure, the
imaginary parts of the two phasors always cancel because they are equal and opposite, and the
real parts add to form cos (ω t). On the right side, imaginary parts cancel at all times, and the real
parts add to yield sin (ω t).

There are two ways to represent a sinusoid A cos (ω t + θ) in terms of counter-rotating pha-
sors. The simpler method is to scale the lengths of the phasors for cos (ωt) in Figure 2.1.2 by the
amplitude A and then to change the phase of each phasor by rotating it in its direction of rotation
θ rad. This operation corresponds to advancing or leading the phase of the +ω phasor and
advancing or leading the phase of the  phasor by θ rad. The other way makes use of the trigo-
nometric identity

(2.1.6)

which states that a sinusoid with an arbitrary phase angle can always be represented as the sum of
a cosine wave and a sine wave whose coefficients are A cos and , respectively. Depend-
ing on the phase angle θ, these coefficients can be positive, negative, or zero. When either is neg-
ative, the polarity of the associated sine wave or cosine wave is just inverted; i.e., its phase is
changed by π rad, or 180°, so that the negative sign is absorbed and the coefficients represent
nonnegative amplitudes. So, the phasors for cos (ω t) and sin (ω t) in Figure 2.1.2 with their
lengths multiplied by the coefficients in Equation (2.1.6) also represent A cos (ω t + θ).

2.1.2b Line Spectrum

An alternative to counter-rotating phasors is the line spectrum (discrete spectrum). Because each
phasor shown in Figure 2.1.2 contains only three pieces of information, its length (amplitude), its
angular velocity +ω or , and its phase (measured relative to the positive horizontal axis shown
in Figure 2.1.2), the same information can be presented differently as shown in Figure 2.1.3. At
points  and +ω on the horizontal frequency axis, a vertical line is drawn whose length equals
that of its corresponding phasor to give the amplitude. The phase of each phasor is plotted above
or below its frequency on a separate graph called the phase spectrum. The range of the phase
spectrum is from , or °, to + π, or 180°. Consider, for example, sin (ωt) as represented
on the right side of Figure 2.1.2 and Figure 2.1.3. The phase of the counterclockwise phasor is

, or °, and that of clockwise phasor is π/2, or +90°.
The real advantage of the line-spectrum representation is evident when the signal is com-

posed of several different frequency components ±ω1, ±ω2, ±ω3, . . , because a separate phasor
diagram would be needed for each frequency pair ±ωn, whereas all frequencies can be displayed
in one line-spectrum plot. A slight and apparent disadvantage is that the concept of negative fre-
quencies is used and signal amplitude is split evenly between the positive and negative frequen-
cies. This representation is a matter of convention, however. If only the total amplitude at each
specific frequency is of interest, then phases can be ignored and line spectra drawn at dc (zero
frequency) and only at positive values of frequency. The amplitudes are simply doubled at posi-
tive frequencies from their values in the “two-sided” line-spectra representation. It is also possi-
ble, by a different convention, to define the spectrum by using only positive frequencies and
simply giving the amplitude A and phase θ for each sinusoid in the form of Equation (2.1.3). In
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some applications, it is more useful to give the power A2/2, rather than the amplitude A, associ-
ated with each spectral line.

The complex exponentials not only have an interesting interpretation as counter-rotating pha-
sors but also have the advantage of representing arbitrary sinusoids without explicitly using the
sine and cosine functions themselves, or having to take the real part of a complex number as in
Equation (2.1.5a). Because complex exponentials form the basis for all mathematical transfor-
mations between the time domain and frequency domain, their use has become the method of
choice.

While a sinusoid mathematically represents a pure tone at a specific frequency ω0/2π = l/T
Hz, most periodic musical sounds or periodic signal waveforms have harmonic structure, mean-
ing that they also contain frequencies that are integer multiples of the lowest or fundamental fre-
quency ω 0 which determines the period T. These higher frequencies do, in general, have

(a) (b)

Figure 2.1.2 Waveform representations: (a) cosine wave, (b) sine wave represented by counter-
rotating phasors.

Figure 2.1.3 Line-spectrum representation of  at left and  at right.ωt( )cos ωt( )sin
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different amplitudes and phases. Within the period T, each higher frequency or higher harmonic
will have an integer number, e.g., 2 or 3 or 4, etc., of full oscillations. The line spectrum is a
meaningful way to represent such a signal in the frequency domain. Before the line spectrum can
be drawn, the amplitudes and phases of the frequency components in the time waveform are
required. These can be found from a specific mathematical analysis of the waveform called Fou-
rier analysis. An understanding of Fourier analysis is essential to the general concept of the spec-
trum, frequency-domain representation of signals, transformations, and linear signal processing.

2.1.2c Fourier-Series Analysis

To determine whether a periodic f (t) has a sinusoidal component, cos (ω t) for example, at fre-
quency ω, the product f (t) cos (ωt) is integrated over one full period T = 2π/ω. If, for example,
f (t) = A cos (ω t), then

(2.1.7)

because cos2 (ω t) = 1/2 + 1/2 cos (2ωt) and the second term integrates to zero. Thus, the ampli-
tude A of cos (ωt) in f (t) is simply 2/T times the integral, Equation (2.1.7). The left integral in
Equation (2.1.7) would equal zero if f (t) = A cos (nω t), , but n = 0, 2, 3.... The same
method applies by using sin (ω t) if f (t) contains the sinusoidal component A sin (ωt). This forms
the basis for Fourier analysis, that is, a systematic way to determine the harmonic content, in
terms of sin (nω0t) and cos (nω0t), for n = 0, 1, 2,..., of a periodic f (t) whose period T = 2π/ω 0.

A Fourier series is a mathematical way to represent a real, periodic, finite power signal in
terms of a sum of harmonically related sinusoids. If f (t) is periodic with period T, it repeats itself
every T so that

(2.1.8)

and its Fourier series is given by

(2.1.9)

where ω0 = 2π/T and the Fourier coefficients are real numbers given by

(2.1.10)
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(2.1.11)

The frequency ω0 is called the fundamental frequency (or first harmonic) and, for n = 2, 3, 4,
. . ., n0 are the second, third, fourth, etc., harmonics, respectively. The a0/2 term is the average
value or dc (zero-frequency) content of f(t). The Fourier coefficients in Equations (2.1.10) and
(2.1.11) can be interpreted as the average content of cos (nω0t) and sin (nω0t), respectively, in
f (t).

By using the Euler identity, Equations (2.1.4), (2.1.10), and (2.1.11) can be combined to yield

(2.1.12)

where each cn is a complex Fourier coefficient whose magnitude and (phase) angle  are, respec-
tively

(2.1.13a)

(2.1.13b)

By defining c0 = a0/2 and, for 

(2.1.14)

the Fourier series Equation (2.1.9) can be written as

(2.1.15a)

(2.1.15b)

which can be derived from Equation (2.1.9) by using Equations (2.1.12), (2.1.14), and (2.1.4).
Equation (2.1.15b) is the complex form of the Fourier series and can be interpreted by using
Equation (2.1.15a), which shows the sum of the dc term, positive-frequency terms, and negative-
frequency terms (n has only negative values in the second sum), respectively.
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When a periodic signal is represented in the form (2.1.15b), its corresponding line spectrum
can be viewed, first, as pairs of pure sine waves and cosine waves with different real coefficients
an and bn, as prescribed by Equations (2.1.10) and (2.1.11) at positive frequencies nω0 which
sum to form sinusoids like Equation (2.1.6). Using identities (2.1.5), however, these sine waves
and cosine waves also can be written as sums of complex exponentials  and  with
amplitudes and phases given by the complex coefficients cn. Alternatively, the line spectrum can
be viewed as sinusoids at positive frequencies nω0 in the form (2.1.6) and each represented as
the sum of a pair of phasors counter-rotating with angular velocities + nω0 and –nω0 whose
lengths equal , and whose initial phase angle is specified by the angle of cn , In both interpre-
tations negative frequencies are used, but this results in the very compact complex exponential
notation in Equation (2.1.15b), where sine and cosine functions are no longer needed.

Figure 2.1.4 shows different periodic functions of time and their corresponding line spectra
determined from the magnitude and phase (or angle) of the complex Fourier coefficients cn.

2.1.2d Discrete Fourier Series

If a Fourier series has only a finite number of terms (i.e., its frequency band is limited) and the
highest frequency equals Kω0 rad/s (the Kth harmonic), then Equation (2.1.15b) simplifies to the
finite sum

(2.1.16)

In certain applications the values of f (t) are needed only at N instants in time (within the period
T) that are spaced T/N apart. The values f (t) at these N points in time, from Equation (2.1.16).
are given by

(2.1.17)

where m is an integer. Choosing the number of points N = 2K, that is, the time interval between
points equal to half of the period of the highest frequency (T/N = T/2K) and substituting 2π/T for
ω0 in Equation (2.1.17) gives

(2.1.18)
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which is called the Nth root of unity. The quantity , for N values of m, mathematically repre-
sents specific points on the unit circle in the complex plane spaced 2π/N, or 360°/N apart (begin-
ning from  = 1). Each of these points is physically interpreted as the location of the tip of a
phasor of unit length, which rotates through 2π rad, or 360°, during the period T at the instants in
time mT/N. Because the phasor for the nth harmonic has an angular velocity n times faster than
that of the fundamental (n = 1), the term  appears in Equation (2.1.18). One way to interpret
the term 2π/N in Equation (2.1.19) is that, for any one of the N/2 harmonics, only N discrete val-
ues of phase are possible after sampling, regardless of frequency. The coefficients cn in Equation

wn
m

e
j0

wN
nm

Figure 2.1.4 Periodic functions and their line spectra.
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(2.1.18) are complex numbers of the form  that scale the unit amplitudes and shift the
phases of the sampled harmonics represented by the quantity .

The Fourier coefficients are related to the sampled values of f (t) by the similar equation

(2.1.20)

where the integer M is even and numerically equal to N. Equation (2.1.20) can be substituted into
Equation (2.1.18), or vice versa, to yield an identity. These two equations define an N-point dis-
crete Fourier-series pair which is often called a discrete Fourier transform (DFT) pair. They
relate the N equally spaced sampled values of f (t) in Equation (2.1.18) to its line spectrum,
which contains N/2 negative-frequency components, a dc term, and N/2 positive-frequency com-
ponents as well as their phases as prescribed by Equation (2.1.20). For an example, see the last
line spectrum in Figure 2.1.4

Equation (2.1.20) is a discrete-time version of Equation (2.1.12) and is valid only if the peri-
odic function f (t) is sampled throughout its period T at a rate that is twice the highest frequency
it contains. If f (t) contains harmonics higher than N/2, then the cn coefficients in Equation
(2.1.20) are not identical to those in Equation (2.1.12); they will become corrupted or aliased
because higher frequencies (with a harmonic number greater than N/2) in f (t) influence the value
of cn as computed from Equation (2.1.20), but these frequencies cannot be reconstructed by
using the harmonics up to harmonic number N/2 as in Equation (2.1.18). Furthermore, the result-
ing line spectrum itself will be incorrect.

The DFT can be computed very efficiently from sampled values of f (t), as contained in Equa-
tion (2.1.20), or f (t) can be reconstructed at the sample points, as in Equation (2.1.18), using a
numerical algorithm called the fast Fourier transform (FFT). The algorithm exploits, in compu-
tation, the fact that  represents only N distinct values of phase.

2.1.2e Spectral Density and Fourier Transformation

Line spectra, where each line | cn | represents a sinusoid whose average power is , can-
not be used to represent the spectrum of a finite-energy signal f(t) because the average power of
f(t), as given in Equation (2.1.2), is zero by definition. Furthermore, while a finite-energy signal
can exist for all time, subject to the constraint given in Equation (2.1.1), it has no finite period T
associated with itself. For finite-energy signals, an amplitude-density spectrum is defined in the
following way

(2.1.21)

The dimensions of F(ω ) are amplitude-multiplied by time or amplitude/(l/time) and are inter-
preted as amplitude/frequency. The quantity F(ω) is called amplitude spectral density or, simply,
spectral density of f (t). By comparing Equation (2.1.21) with Equation (2.1.12), F(ω) is seen to
be defined for all rather than discrete frequencies, and the limits of integration include all time
rather than one period. Similar to Fourier analysis in concept, the integral (2.1.21) extracts from
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f (t) its average spectral density F(ω) and associated phase at each frequency ω throughout a con-
tinuum of frequencies. The original signal f (t), again analogously to Fourier analysis, can be
reconstructed from its spectral density by using the relation

(2.1.22)f t( ) 1
2π
------ F ω( )e

jωt
dω

∞–

∞

∫=

Figure 2.1.5 Amplitude spectral density  corresponding to time-domain signals f(t).F ω( )
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where all frequencies, instead of discrete frequencies, are used. Equations (2.1.21) and (2.1.22)
form a Fourier-transform pair. By comparing these two equations it is seen that the value of f (t)
at, for example, t = t1 depends on contributions from F(ω) at all frequencies and, conversely, that
the value of the spectral density F(ω) at ω = ω1 depends on contributions from f (t) at all times. In
both cases integrals with infinite limits are evaluated. In Figure 2.1.5, several Fourier-transform
pairs are illustrated.

The relations (2.1.21) and (2.1.22) can be derived from the Fourier-analysis Equations
(2.1.12) and (2.1.15b) by using a limiting process where the period T becomes infinite and the
frequency interval between harmonics approaches zero.

The continuous Fourier transform (Equation 2.21) is often approximated or estimated by
using the discrete Fourier transform (2.1.18) by assuming that f (t) is periodic, with period T, and
that its high-frequency content is zero beyond harmonic number N/2, where N equals the number
of equally spaced sampled values of f (t) within the assumed period.

The Laplace transformation F(s) uses the complex variable  in place of j ω in
Equation (2.1.21) with the lower limit of integration set equal to zero. The quantity  is a
convergence factor that exponentially damps out f (t) as . This transform is used in appli-
cations where finite-power signals (like sinusoids) that are zero for negative values of time are
needed. While the inversion of the Laplace transform is more complicated than Equation
(2.1.22), tables of transform pairs are available for commonly used signals.

2.1.2f Impulse Signal

The unit impulse is a very important finite-energy signal that is denoted by  and defined by
the constant spectral density F(ω) = 1 and zero phase for all frequencies. Substituting F(ω) = 1 in
Equation (2.1.22) gives

(2.1.23)

Because +  and the odd function sin (ω t) integrates to zero, Equation
(2.1.23) can be interpreted as summing (integrating) unit-amplitude cosine waves of every fre-
quency. When t = 0, cos (ω t) = 1 regardless of the frequency ω, so that all the cosine waves rein-
force one another, giving  infinite value. At times other than t = 0, the cosine waves
destructively interfere and cancel, so that  for . Consider, for example, the last
example given in Figure 2.1.4 as the number of harmonics and length of the period are increased
without limit. By using Equation (2.1.21) with  and the fact that F(ω) = 1

(2.1.24)

which implies that the value of the integral is simply the value of the integrand, in this case 
evaluated or sampled at t = 0. If the numerical value 1 is substituted for  in Equation
(2.1.24), then the integral of  itself results, which also equals 1. By interpreting this latter
integral as the area underneath , the entire contribution to the value of the integral must
come when t = 0 because  is zero at other times. The unit impulse , also called a delta
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function, belongs to a class of singularity functions. It has many different interpretations in terms
of limits of sequences of functions, one of which is the limit of a rectangularly shaped pulse
whose width shrinks to zero and whose height increases to maintain constant area under the
pulse so that the integrated value always is unity. The dimensions of  are 1/time or fre-
quency.

The delta function provides an interesting link between line spectra and spectral density
because finite-power signals can be interpreted as delta functions (in frequency) in the spectral
density. For example, the finite-power signal  has spectral density

(2.1.25)

This can be verified by inserting Equation (2.1.25) into Equation (2.1.22) and evaluating the
integral by using the sampling property of the delta function. The result is

(2.1.26)

From this example, it is clear that spectral density is a more general concept than line spectra.

2.1.2g Power Spectrum

In Fourier analysis, the product  is integrated with respect to time to resolve or extract
the frequency components, either discrete as in Equation (2.1.12) or continuous as in Equation
(2.1.21), from f (t). These frequency components also manifest themselves as a function of  in
the product , where  is a time-shift parameter. For example, if ,
this latter product is

(2.1.27)

For a fixed value of the parameter , the first term on the right of Equation (2.1.27) oscillates in
time t at 2ω1 and has constant phase angle  (it is a sinusoid), while the second term does not
depend on time t (it is a constant). By defining  as the time average of the product

(2.1.28)

and inserting Equation (2.1.27) into Equation (2.1.28), the sinusoid at 2ω1 with fixed phase inte-
grates to zero for every choice of , and the second term contributes to yield
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The coefficient A2/2 equals the power of , and the function  oscillates at
the same frequency ω1 but as a function of  rather than t. Because f (t) generally would contain
a multitude of different frequencies, it is worthwhile to examine the spectral properties of .
The Fourier transform of  in Equation (2.1.28), using the variable  instead of t in Equation
(2.1.21), is

(2.1.30)

and defined as the power spectrum or power spectral density of the finite-power signal f (t). In
Equation (2.1.28),  is called the autocorrelation function of f (t), and its value for  is
the average power of f (t) as defined in Equation (2.1.2). The autocorrelation function also equals
the inverse Fourier transform of the power spectral density, which, from Equation (2.1.22), is

(2.1.31)

Similarly to Equations (2.1.25) and (2.1.26) for spectral density, the power spectral density asso-
ciated with Equation (2.1.29) would consist of delta functions of strength  at fre-
quencies .

Equations (2.1.28) and (2.1.30) are very useful when spectral properties of a non-determinis-
tic, finite-power signal f (t) = n(t), arising, for example, from a noise process, are studied. By def-
inition, no functional relationship exists between n(t) and t. The signal has finite average power
but does not, in general, consist of pure sinusoids at fixed frequencies with constant phase that
are representable by line spectra. Therefore, Fourier-analysis methods are not directly applicable.
Normally, the autocorrelation function  in Equation (2.1.28) is a finite-energy signal which
first can be estimated from a sufficient number of samples of f (t), then Fourier-transformed as in
Equation (2.1.30). The result is a power spectral density as a function of continuous frequency.
The autocorrelation function contains oscillations at all the frequencies contained in f (t) with
amplitudes equal to their respective powers, as illustrated by Equation (2.1.29) for a single fre-
quency ω1, and the power spectral density integral defined in Equation (2.1.30) extracts, via Fou-
rier transformation, the distribution of power in frequency P(ω) of the underlying noise process.
The power spectra density has zero phase because  is always an even function of .

White noise is a term used to characterize a noise process whose power spectral density is
constant or flat as a function of frequency. In contrast to an impulse, whose amplitude spectral
density is flat and is interpreted as a sum of cosine waves of all frequencies each with identically
zero phase, the phases of the similar cosine waves in white noise would vary randomly in time.
The former is a finite-energy signal existing for one instant in time and the latter a finite-power
signal existing for all time; both have continuous, flat spectra.

2.1.2h Analytic Signal

The actual waveshapes of certain signals, viewed in the time domain, appear to have identifiable
amplitude-modulation (AM) and frequency-modulation (FM) effects that may vary as time
progresses. This is not easily recognized in the signal's spectrum unless the modulation and sig-

f t( ) A ω1t( )cos= r τ( )
τ

r τ( )
r τ( ) τ

P ω( ) r τ( )e
jωt–

∞–

∞

∫ dτ=

r τ( ) τ 0=

r τ( ) 1
2π
------ P ω( )e

jωt ωd
∞–

∞

∫=

2π A
2

4⁄( )
ω1±

r τ( )

r τ( ) τ
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nal to be modulated are simple, such as that generated by AM or FM between two sinusoids. The
analytic signal is one procedure used to define AM or FM effects and extract quantitative infor-
mation about them from the spectrum f (t). The analytic signal fA(t) is a linear transformation of
the signal f (t) which also has an interesting spectral interpretation.

Consider the signal

(2.1.32)

and from it form a second signal  by leading the phase of  by 90° and leading the phase
of  by 90°, which corresponds to multiplication by j and , respectively. The second signal
is, by using Equation (2.1.5c)

(2.1.33)

The analytic signal associated with (t) is defined as

(2.1.34)

The analytic signal is a complex function of time, and its (line) spectrum contains no negative-
frequency components. Figure 2.1.6 illustrates, with phasors, the successive operations in form-
ing the analytic signal for cos (ω t).

The amplitude or envelope E(t) and phase  of the analytic signal are defined by

(2.1.35)

so that, in terms of f (t) and , they are

(2.1.36a)

(2.1.36b)

and, from Equation (2.1.36b), the instantaneous frequency is defined as

(2.1.37)
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2
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e
jωt

=
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ωi t( ) dθ t( )
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-------------=
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In the example f (t) = cos (ω t), the amplitude and instantaneous frequency of the associated
analytic signal are 1 and ω, respectively.

While the analytic signal is a linear transformation of the signal that, in effect, converts nega-
tive-frequency components in the spectrum of f (t) to positive-frequency components, the enve-
lope E(t) and instantaneous frequency ω1(t) are nonlinear functions of f (t) and . For more
complicated signals, ω1(t) is, in general, not the same as ω in the spectrum.

The spectral operation of advancing the phases of all positive-frequency components by 90°
and advancing the phases of all negative-frequency components by 90° is called Hilbert transfor-
mation; that is,  is the Hilbert transform of f (t).
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Chapter

2.2
Spectral Changes and Linear Distortion

Douglas Preis

2.2.1 Introduction

When a reproduced signal is not a replica of the original signal, it is distorted. Distortionless
transmission of a time-varying signal through a system requires that the signal's shape be pre-
served. The two general mechanisms of signal distortion are nonlinear and linear.

2.2.2 Distortion Mechanisms

In a broad context, nonlinear distortion includes all forms of output-signal corruption that are
not linearly related to (i.e., statistically linearly dependent on or correlated with) the input signal.
Modulation (amplitude or frequency) of the signal (or even its time derivatives) by an imperfect
system produces a certain amount of up conversion and down conversion of the signal's fre-
quency components. For example, squaring or cubing of the signal resulting from a nonlinear
transfer characteristic is a form of (self) amplitude modulation, whereas time-base errors, like
speed variations, are equivalent to frequency modulation of the signal. These converted frequen-
cies, like noise, are not linearly related to the input. The coherence function  is a quantita-
tive measure of the cumulative effect, at each frequency, of these various forms of signal
corruption.

Linear distortion implies that even though the output signal is linearly related to the input, the
shape of the output signal is different from that of the input signal. The system itself is linear and
does process signals linearly (i.e., scale factors are preserved, and superposition is valid), but lin-
ear mathematical operations on the input signal such as differentiation or integration are permis-
sible. Linear distortion changes the relative relationships among the existing constituents of the
signal by altering either intensity or timing, or both, of its different frequency components. As a
consequence, the output signal has a different shape. The system function (or complex frequency
response) only predicts the spectral changes that the spectrum of the input signal will undergo
and not the change of signal shape in time. The actual time-domain signal must be computed
from direct convolution or inverse Fourier transformation.

When a single sinusoid is used as an input to a linear system, the corresponding steady-state
output is also a sinusoid of the same frequency but, generally, with different amplitude and phase
as prescribed by the complex frequency response. This single sinusoid is never linearly distorted

γ 2 ω( )
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because it always is a replica of the input. In contrast, if the frequency content of the input signal
is discrete (e.g., a square wave) or continuous (e.g., a single rectangular pulse), then linear distor-
tion is observable as waveshape change. The extent to which an input signal will be linearly dis-
torted depends on both its spectrum and the system function or complex frequency response of
the linear system that processes it. Linear distortion encompasses what is sometimes called tran-
sient distortion, meaning the waveshape change of a finite-energy (transient) input signal (e.g., a
short tone burst or pulse) under linear operating conditions. Finite-power input signals such as
square waves, random noise, music, or speech also can be linearly distorted, however. Nonlinear
effects such as clipping or slew-rate limiting of transient signals are a form of nonlinear distor-
tion, which implies that transient distortion can be amibiguous terminology.

2.2.2a Linear Range

The range of linear operation of a system is usually established with sine-wave signals. The most
frequently used procedure is to verify, using a single sine-wave input, whether the magnitude-
scale factor is preserved as input amplitude is changed and/or to verify, using two sinusoids of
different frequency simultaneously as an input, whether superposition is valid. Both procedures
examine the linearity hypothesis under sinusoidal, steady-state operating conditions. Because the
input spectrum is as narrow as possible (a line spectrum consisting of one or two discrete fre-
quencies), the spectrum of the output can easily reveal the existence of other, or “new,” frequen-
cies which would constitute nonlinear distortion corresponding to the chosen input signal. The
ratio of total power contained in these other frequencies to the output power at the input fre-
quency (or frequencies), expressed in percentage or decibels, is often used as both a measure and
a specification of nonlinear distortion (e.g., harmonic distortion, intermodulation distortion, or
dynamic intermodulation distortion, depending on the specific choice of input frequencies). This
method of testing linearity is relatively simple and can be very sensitive. With modern, wide-
dynamic-range, high-resolution spectrum analyzers and high-purity sine-wave generators, the
effects of very small amounts of nonlinearity can be measured for sinusoidal steady-state opera-
tion.

Some aspects of this kind of spectral analysis are questionable, however. Incoherent (uncorre-
lated) power can exist at the test frequency itself (e.g., due to cubic nonlinearity, time-base
errors, or noise), and—even more important—the system is never excited throughout its full
operating bandwidth by the test signal. Because nonlinear effects do not superpose, the percent-
age of sine-wave nonlinear distortion measured, for example, as a function of test-signal fre-
quency for fixed-output-power level, is not the same as the percentage of uncorrelated output
power as a function of frequency for broadband operation with nonsinusoidal input signals. The
latter can be expressed by using the coherence function to define a frequency-dependent signal-
to-noise ratio as the ratio of coherent power to incoherent power, expressed in percentage or deci-
bels.

2.2.2b Spectra Comparison

Comparison of input and output spectra of a system is worthwhile. Spectral changes can indicate,
in the frequency domain, the existence of linear distortion as well as nonlinear distortion. For lin-
ear operation, the spectral changes that any input signal undergoes are predicted by the system
function or complex frequency response. For nonlinear operation, the portion of the output sig-
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nal's spectrum not linearly related to the input signal depends, in detail, on each specific input
signal and how it is nonlinearly processed by the system.

2.2.3 Sinusoidal Steady-State Measurements

The complex frequency response or system function

(2.2.1)

of a linear system predicts the magnitude (or amplitude)  and phase  of an output
sinusoid relative to an input sinusoid for steady-state operation at the frequency . These two
frequency-domain quantities are fundamental and form the basis for the discussion of linear dis-
tortion of signals by a linear system.

The meaning of the magnitude response of a system is well understood and often displayed
alone as the frequency response even though it is only the magnitude of . The phase-shift-

-versus-frequency characteristic is not commonly shown but is equally important. Some
conventions, definitions, and properties of phase shift and the phase-shift characteristic merit
discussion.

Figure 2.2.1 illustrates the convention for phase lead or lag between sinusoids of the same fre-
quency relative to a reference. The reference sinusoid (solid line) has an upward-sloping zero
crossing at zero time, and that leading (short dashes) has its corresponding zero crossing at an
earlier time or is advanced in time, whereas that lagging (long dashes) has its corresponding zero
crossing at a later time or is delayed in time.

H ω( ) H ω( ) e
jφ ω( )

=

H ω( ) φ ω( )
ω

H ω( )
φ ω( )

Figure 2.2.1 Standard conventions for sinusoids having steady-state phase shifts relative to a ref-
erence sinusoid (solid curve). The leading sinusoid (short dashes) has its first zero crossing at an
earlier time than the reference, whereas the lagging sinusoid (long dashes) has its first zero cross-
ing at a later time.
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Aside from this convention, Figure 2.2.1 has two ambiguities and raises a fundamental ques-
tion about the nature of phase shift itself. First, a phase lead of π is indistinguishable from a
phase lag of π; also shifling any of these sinusoids by a multiple of  would not change the
relative phase shifts, and consequently Figure 2.2.1 would not change. Thus, more information
than Figure 2.2.1 shows is required to avoid ambiguity. Second, it appears that a phase shift and a
time shift are equivalent, but they are not. This is so because  and for a specific phase
shift  the corresponding amount of time shift depends upon the sinusoid's frequency . To
illustrate this point consider Figure 2.2.2a, wherein an approximate square wave is constructed
from the first three nonzero harmonics of its Fourier series. Figures 2.2.2b and c show the differ-
ence between a constant phase shift for each harmonic and a constant time delay for each har-
monic, respectively. The waveform of Figure 2.2.2b is severely linearly distorted, whereas that in
Figure 2.2.2c is not. It is interesting to note that the amount of phase lag necessary to keep the
waveform “together” is directly proportional to frequency (that is; the first, third, and fifth har-
monics were lagged by π/2, 3π/2, and 5π/2, respectively). Therefore, in Figure 2.2.2c the amount
of phase lag varies linearly with frequency, and this corresponds to a uniform time delay.

The fundamental question raised by Figure 2.2.1 is related to causality (i.e., cause and effect).
How is it possible for a signal to be “ahead” of the reference signal in time, especially if the ref-
erence signal is the input or stimulus to a system and the phase shift of the output signal relative
to the input is measured? Equivalently stated, how can the output-signal phase lead or be ahead
of the input signal in time? Does this suggest that causality would permit only phase lags to
occur in such a situation? It is indeed an interesting question in view of the fact that phase-shift
measurements themselves can be somewhat ambiguous. The answer has to do with the fact that
these are steady-state measurements, or more precisely, with how the steady state itself is
achieved. Both phase lead or phase lag of a system output relative to its input are physically real-
izable without ambiguity or violation of causality. An example of each case is shown in Figure
2.2.3. Here the actual response of two different circuits to a tone-burst input was captured. In
each case the input signal is also shown in time synchronization for reference purposes. It is dur-
ing the initial transient state that either a phase lag or a phase lead is established. Note that in
each case the output zero crossings are initially unequally spaced and that net phase lag or lead is
gradually accumulated. Closer inspection of Figure 2.2.3 reveals that, from a mathematical view-
point, the output in Figure 2.2.3a is approximately the integral with respect to time of the input,
whereas in Figure 2.2.3b the output is nearly the derivative with respect to time of the input. In
the steady state, the corresponding phase shifts are seen to be about  and + , respec-
tively. Circuits that have these properties are referred to as phase lag (integrators) or phase lead
(differentiators). Another way of interpreting the results of Figure 2.2.3 then (referring also to
Figure 2.2.1) is to note that the integral with respect to time of  is

or

whereas the time derivative of  is  or

2π±

φ0 ωt0=
φ0 ω

π 2⁄– π 2⁄

ωt( )sin

1–
ω
------ ωt( )cos

1
ω
--- ωt π

2
---– 

 sin

ωt( )sin ω ωt( )cos
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ω ωt π
2
---+ 

 sin

(a)

(b)

(c)

Figure 2.2.2 Characteristics of various waveforms: (a) an approximate square wave constructed
from the first three (nonzero) Fourier harmonics, (b) constant phase shift for each harmonic yields
a new waveform that is linearly distorted, (c) constant time delay for each harmonic uniformly
delays the square wave while preserving its shape.
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so that here the steady-state phase lag or lead of π/2 in the frequency domain corresponds to inte-
gration or differentiation, respectively, in the time domain.

An important conclusion to be drawn from Figure 2.2.3 is that the phase shift of a system is
remarkably a property of the steady state.

Two significant aspects of a general phase-shift-versus-frequency characteristic  at a
specific frequency  are its actual numerical value  (positive, zero, or negative) and its
behavior in the vicinity of  (increasing, constant, or decreasing). The reason for this is that
most useful signals passed through a system have finite spectral widths which are broad com-
pared with that of any single frequency used to measure the phase characteristic itself.

The value of the phase shift at an arbitrary frequency that is close to a specific frequency 
can be represented by

(2.2.2)

and in Equation (2.2.2) the correction terms depend upon the difference . To a first
approximation and with reference to Figure 2.2.4

(2.2.3a)

φ ω( )
ω0 φ ω0( )

ω0

ω0

φ ω( ) φ ω0( )≅ correction terms+

∆ω ω ω0–=

φ ω( ) φ ω0( )≅ ∆φ+

(a)

(b)

Figure 2.2.3 Steady-state phase lag or lead is established only after an initial transient period: (a)
a phase lag of about 90º occurs, and the output signal is approximately the integral with respect to
time of the input; (b) a phase lead of 90º occurs, and the output is nearly the time derivative of the
input. The input sinusoid is the same in each case. The transient buildup of phase lag or lead illus-
trates that the phase shift of a system is remarkably a property of the steady state.
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(2.2.3b)

(2.2.3c)

where

is the derivative of the phase shift at  or, equivalently, its slope there. If , Equation
(2.2.3) is exact, and when  is near , it is, in general, approximate. In this approximation it is
the slope or first derivative of the phase characteristic at  that describes the behavior of 
near . Thus, for signals whose spectra lie in the neighborhood of  both

 and 

are important because  gives the steady-state absolute phase shift of the output relative to
the input at , whereas

φ ω( ) φ ω0( )≅ ∆φ
∆ω
------∆ω+

φ ω( ) φ ω0( )≅ dφ
dω
------ 

 
ω0

ω ω0–[ ]+

dφ
dω
------ 

 
ω0

ω0 ω ω0=
ω ω0

ω0 φ ω( )
ω0 ω0

φ ω0( ) dφ
dω
------ 

 
ω0

φ ω0( )
ω0

Figure 2.2.4 Arbitrary phase-shift-versus-frequency characteristic (long dashes). For frequencies
ω near ω0 the slope of the phase shift curve is nearly constant and can be approximated by the
derivative /  evaluated at ω0. The numerical value of the phase slope (or derivative) indicates
how the phase shift varies near ω0.

dφ dω
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expresses the phase shift at  relative to that at .
Because no restrictions have been placed upon the behavior of  or its derivative, each

may assume positive, zero, or negative values throughout the frequency range of interest. There
are, therefore, several different possible combination pairs of phase shift and phase slope. Each
of these presumably would affect the response to a transient signal differently. A preliminary dis-
cussion of the influence of these aspects of phase response on transient signals is given in the
next section together with supporting experimental measurements.

2.2.3a Some Effects of Frequency Response on Transient Signals

An important class of linear systems used in a variety of applications, called minimum-phase
systems, has mathematically interrelated magnitude and phase responses. These responses are
not independent of one another. Specifying one determines the other.

Figure 2.2.5 summarizes the possible relationships between magnitude response, phase shift,
and phase slope versus linear frequency for a general minimum-phase system. For example, a
narrow bandpass system could have a magnitude response characteristic like that from 5-6-4-3-1,
and the associated phase-shift and phase-slope characteristics would be the corresponding por-
tions of those curves below. In a very wideband system the distance between points 5 and 1 on
the frequency axis would be considerably greater and the curve 6-4-3 much flatter; also the cor-
responding sections of the phase and phase-slope curves would require appropriate modification.
In a similar way, 1-2-8-7 could represent the magnitude response for a narrowband-reject filter
which would have the appropriately corresponding phase and phase-slope curves as shown.

dφ
dω
------ 

 
ω0

ω ω0–[ ]

ω ω0
φ ω( )

Figure 2.2.5 Possible relationships among
magnitude, phase, and phase slope versus lin-
ear frequency for a general minimum-phase
system. The numbered vertical-line segments
each connect a different combination of these
three quantities (based on algebraic signs) and
indicate important test frequency ranges where
transient response may differ.
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The steady-state characteristics of the minimum-phase system shown in Figure 2.2.5 are also
interconnected by eight numbered vertical lines. These numbers indicate important test points
(or frequency ranges) where phase shift and phase slope are, in various combinations, positive,
zero, and negative. Experimentally measured effects of each of these eight different combina-
tions of  and /  on three different transient signals, illustrated along with their spectra
in Figure 2.2.6, are shown in Figure 2.2.7. The three test signals were a 1-ms-wide rectangular
pulse, a single cycle of a l-kHz sine wave, and a 7-ms tone burst at 1 kHz.

The eight different combinations of phase shift and phase slope in Figure 2.2.4 were simu-
lated, in each case, near 1 kHz by using a five-band graphic equalizer as the minimum-phase sys-
tem. In each of these eight cases, the linear distortion of transient signals is quite different. Here,
the influence of complex frequency response on the system response to transient signals can be
explained, qualitatively, in terms of the algebraic signs of phase shift and phase slope. Table 2.2.1
categorizes the eight test cases on this basis. Tables 2.2.2 and 2.2.3 summarize some general
effects which the algebraic sign of the phase shift and the phase slope (at 1 kHz) has on response
to transient signals.

For the tone bursts, it appears that the actual numerical value of  influences the “inner”
structure of the waveform, whereas /  mostly affects the envelope, or “outer” structure.
This is consistent with the approximation in Equation. (2.2.3c)

 with /  = 1 kHz

Positive values for both  and /  imply that  is positive and increasing near , and
this results in sharp and abrupt transient behavior. If  and /  are both negative, then  is

φ ω( ) dφ dω

φ
dφ dω

φ ω( ) φ ω0( ) dφ
dω
------ 

 
ω0

ω ω0–( )+= ω0 2π

φ dφ dω φ ω0
φ dφ dω φ

Figure 2.2.6 Magnitude of the spectral density in
decibels versus frequency for test signals used to
evaluate the response of a general minimum-
phase system to transient signals. The dashed
lines indicate the upper bound for the continuing
spectral peaks.
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becoming more negative, and this yields smoother, slower transients. When the phase shift and
phase slope have opposite signs, these opposing effects are seen to combine.

Perhaps the most interesting case occurs when  but  (see Figure
2.2.7, cases 4 and 8). For the very-narrow-spectrum tone burst there is no steady-state phase shift
as expected; however, the response to the wide-spectrum rectangular pulse in these two cases is
remarkable. These results may be interpreted in the following way. Because the rectangular pulse

φ ω0( ) 0= dφ/dω[ ]ω0
0≠

Table 2.2.1 Categories of Test Cases

Table 2.2.2 Phase Shift Effects

Table 2.2.3 Phase Shift Effects
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has a considerably wider spectrum than the tone burst, it has many spectral components both
above and below . In case 8,  and from the approximation (2.2.3c)

so that for ,  is positive, whereas for ,  is negative. Therefore, and in sim-
ple terms, higher frequencies tend to be differentiated in time, whereas lower ones are integrated.
This is seen to occur. Just the opposite occurs in case 4 because .

From the foregoing examples it is clear that the response of a system to transient signals
depends on its frequency response. For minimum-phase systems, the phase and derivative of
phase with respect to frequency can be used to interpret, qualitatively, important aspects of linear
distortion of signals in the time domain.

2.2.4 Phase Delay and Group Delay

Phase delay and group delay are useful quantities related to the phase shift  and defined as

(2.2.4)

and

(2.2.5)

respectively. The negative signs are required because, according to the conventions for sinusoids
in Figure 2.2.1, negative values of phase shift correspond to positive time delays. At a specific
frequency , these two quantities are constants in the two-term Taylor-series expansion of

 Equation (2.2.3c), valid near and at , which can be rewritten as

(2.2.6)

Equation (2.2.6) restates the fact that the phase shift at ω is equal to the phase shift at  plus the
phase shift at ω relative to . The steady-state phase shift for the components of a narrowband
signal near  is given by Equation (2.2.6), and the effect of the two terms in this equation can
be interpreted in the following way. First, each component in the band undergoes a fixed phase
shift

then those components at frequencies different from  are subjected to additional phase shift
. This additional phase shift is one which varies linearly with frequency, so it

does not alter the waveshape (see Figure 2.2.2).

ω0/2π 1kHz= dφ/dω[ ]ω0
0>

φ ω( ) dφ/dω[ ]ω0
ω ω0–( )=
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0<

φ ω( )

τ p ω( ) φ ω( )/ω–=
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-------------–=

ω0
φ ω( ) ω0
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ω0
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ω0– τ p ω0( ) φ ω0( )=
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τg– ω0( ) ω ω0–[ ]



2-42 The Audio Spectrum

An amplitude-modulated (AM) sinusoid is a narrowband signal, and the effects of phase
delay and group delay on such a signal are illustrated in Figure 2.2.8. Phase delay phase-lags
(delays) the high-frequency carrier (inner structure), while the envelope (outer structure) is
delayed by an amount equal to the group delay.

Geometrically, Figure 2.2.4 shows that

Note that  only when  and the intercept . In this special case 
and  varies linearly as a function of ω (that is, the entire phase-shift characteristic is a
straight line which passes through the origin having slope ).

Generally both  and  can assume positive, zero, or negative values depending upon the
detailed behavior of the phase-shift characteristic. Referring to the special minimum-phase sys-
tem in Figure 2.2.5 and in view of definition (2.2.5), the group-delay characteristic is the nega-
tive of the phase slope, and therefore its shape is the same as the magnitude characteristic for this
special case. It is also interesting to note from the same figure that for the bandpass system 5-6-
4-3-1

τg ω0( ) tanβ and τp ω0( ) tan α= =

τg τp= α β= b 0= φ 0( ) 0=
φ ω( )

τg–
τp τg

Figure 2.2.8 The difference between phase delay τ phase and group delay τ group is illustrated by
comparing these two amplitude-modulated waveforms. The lower waveform has positive phase
delay and positive group delay relative to the upper waveform. Because the envelope of the high-
frequency oscillation is delayed by an amount of time τ group group delay is sometimes referred to
as envelope delay.
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can be positive, negative, or zero, but

For the system 1-2-8-7, .
The approximate nature of Equation (2.2.6) deserves particular emphasis because either is

valid only over a narrow range of frequencies ∆ω, and outside this range the correction terms
mentioned in Equation (2.2.2) contain higher-order derivatives in the Taylor series that generally
cannot be neglected.

2.2.4a Distortionless Processing of Signals

In the time domain, the requirement for distortionless linear signal processing (i.e., no wave-
shape change) is that the system impulse response h(t) have the form

(2.2.7a)

where δ(t)  is the unit impulse, and the constants and . Equation (2.2.7a) and the con-
volution theorem together imply that the output signal g(t) is related to the input f (t) by

(2.2.7b)

The distortionless system scales any input signal by a constant factor K and delays the signal as a
whole by T seconds. The output is a delayed replica of the input. Through substitution, Equation
(2.2.7b) gives the corresponding restrictions on the frequency response, namely

(2.2.8)

Comparison of Equation (2.2.8) with Equation (2.2.1) indicates that the frequency-domain
requirements are twofold: constant magnitude response |H(ω)| = K and phase response propor-
tional to frequency . Waveform distortion or linear distortion is caused by deviations
of  H(ω) from a constant value K as well as departures of  from the linearly decreasing
characteristic . The former is called amplitude distortion and the latter phase distortion.
From Equation (2.2.8) absence of phase distortion requires that the phase and group delays in
Equations (2.2.4) and (2.2.5) each equal the overall time delay 

(2.2.9)

Some experimentally measured effects of the deviations of  H(ω) and  from a con-
stant value are illustrated in Figure 2.15. In the experiment, four bandpass filters were connected
in cascade to give the attenuation magnitude (reciprocal of gain magnitude) and group-delay
characteristics shown in Figure 2.2.9a. The group delay is reasonably flat at midband, having a

τp ω( ) φ ω( )– /ω=

τg ω( ) dφ– /dω 0≥=

τg ω( ) 0≤

h t( ) Kô t T–( )=

K 0> T 0≥
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H ω( ) Ke
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=

φ ω( ) ωT=
φ ω( )

ωT–

T 0≥

τp ω( ) τg ω( ) T= =

τg ω( )
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minimum value there of . Near and at the passband edges τ g deviates consider-
ably from its minimum value. The effects in the time domain are shown in Figure 2.2.9b. Here,
tone bursts at frequencies of 260, 300, 480, and 680 Hz were applied to the filter, and both input
and output oscillographs were obtained. In each of these cases, the oscillations start to build up
after a time equal to the minimum value of τ g. There is significant linear distortion for the tone
bursts whose spectra lie at the passband edges. Some of this distortion can be ascribed to non-
constant attenuation, but the waveform elongation is primarily due to the group delay τ g(ω) devi-
ating from its minimum value.

These experimental results indicate that, for distortionless processing of signals, the band of
frequencies throughout which both magnitude response and group delay of the system are con-

τg 10.9 ms=

(a)

Figure 2.2.9 Attenuation and group delay characteristics: (a) attention (reciprocal of gain) magni-
tude in decibels and group delay in seconds versus frequency characteristics of four cascaded
bandpass filters; (b, next page) experimentally measured responses to transient input signal (tone
burst) of filtering network whose steady-state characteristics are shown in a. For this bandpass
system, each output signal is delayed by the minimum value of the group delay. When the tone-
burst spectrum lies near either passband edge, significant amounts of linear distortion occur in the
form of waveform elongation. This is due, for the most part, to the departure of the group-delay
characteristic from its flat value in the midband and is called group-delay distortion.
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Figure 2.2.9 Continued

(b)
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stant or flat is important relative to the spectral bandwidth of signals to be processed by the sys-
tem.

2.2.4b Linear Phase and Minimum Phase

The impulse response of a (distortionless) unity-gain, linear-phase, band-limited (low-pass) sys-
tem is symmetrical in time about its central peak value and described mathematically by

(2.2.10)

where  is the cutoff frequency in hertz. The magnitude response is , and
the phase response  (a special case of linear phase). This result can be interpreted as a
cophase superposition of cosine waves up to frequency ωc. In general, the group delay for such a
linear-phase system is constant but otherwise arbitrary; that is, τ g(ω) = T s because the phase
shift  is linear but can have arbitrary slope. Figure 2.10b illustrates h(t) in Equation
(2.2.10) delayed, shifted to the right in time, so that its peak value occurs at, say, a positive time t
= T rather than t = 0. Regardless of the value of T, the impulse response is not causal; that is, it
will have finite values for negative time. So if an impulse excitation δ(t) were applied to the sys-
tem when t = 0, the response to that impulse would exist for negative time. Such anticipatory
transients violate cause (stimulus) and effect (response). In practice, a causal approximation to
the ideal h(t) in Equation (2.2.10) is realized by introducing sufficient delay T and truncating or

h t( )
sin ωct( )

πt
-------------------=

ωc/2π fc= H ω( ) 1=
φ ω( ) 0=

ϕ ω( ) ωT–=

(a)

(b)

(c)

Figure 2.2.10 Response characteristics: (a) magnitude response; (b) impulse response; (c) step
response of an ideal linear-phase, band-limited (low-pass) system with cutoff frequency fc Hz.
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“windowing” the response so that it is zero for negative time. This latter process would produce
ripples in the magnitude response, however. Also shown in Figure 2.2.10 are the corresponding
magnitude response (a) and step response (c), which is the integral with respect to time of h(t). In
principle, this ideal system would not linearly distort signals whose spectra are zero for .
In practice, only approximations to this ideal response are realizable.

A minimum-phase system is causal and has the least amount of phase shift possible corre-
sponding to its specific magnitude response . The phase is given by the (Hilbert-trans-
form) relationship

(2.2.11)

and the minimum-phase group delay associated with Equation (2.2.11) is

(2.2.12)

While minimum-phase systems have impulse responses that are zero for negative time (causal),
they are not distortionless. Because magnitude and phase responses are interrelated, the linear
distortion they introduce can often be interpreted by using group delay—Equation (2.2.12).

In contrast to the preceding example, consider approximations to band limiting using realiz-
able minimum-phase, maximally flat, low-pass systems of successively higher order. The fre-
quency-domain and time-domain responses for three-, six-, and nine-pole systems are plotted in
normalized form in Figure 2.2.11. Here the impulse responses are causal but not symmetrical.
The loss of symmetry is due to group-delay distortion. The group delay changes as frequency
increases, and this implies that phase shift is not proportional to frequency, especially near the
cutoff frequency . In this example, deviations of  from its low-frequency value are a mea-
sure of group-delay distortion. Note that the maximum deviation of τ g, indicated by the length of
the solid vertical bars in Figure 2.2.11b, is quantitatively related to the broadening of the impulse
response, while the low-frequency value of  predicts the arrival time of the main portion of
the impulse response, as indicated by the position and length of the corresponding solid horizon-
tal bars in Figure 2.2.11c. Actually, the low-frequency value of  equals the time delay of the
center of gravity of the impulse response. By increasing the rate of attenuation above , the
overall delay of the impulse response increases, initial buildup is slower, ringing is more pro-
nounced, and the response becomes more dispersed and less symmetrical in time.

The minimum-phase group delay  can be evaluated, in theory, for an arbitrary magni-
tude response  by using Equations (2.2.11) and (2.2.12). Consider, for example, an inter-
esting limiting case of the previous maximally flat low-pass system where an ideal “brick wall”
magnitude response is assumed, as shown in Figure 2.2.12. Here the system has unity gain below
the cutoff , and A dB of attenuation above . The normalized frequency .
Although this magnitude response cannot be realized exactly, it could be approximated closely
with an elliptic filter. The group delay is
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(2.2.13)

where the constant

(2.2.14)

As predicted by Equation (2.2.13) and seen in Figure 2.2.12, the group delay becomes infinitely
large at the band edge where . This is a consequence of the assumed rectangular magni-
tude response. As a specific numerical example, let A = 80 dB and . Then T0 =
62 µs and  when . It is interesting to note that demanding
greater (stop-band) attenuation for , requires a larger value for the attenuation parameter
A, and  increases, as does the deviation of the group delay within the passband.

A minimum-phase system is also a minimum-delay system since it has the least amount of
phase change for a given magnitude response. (The group delay equals the negative rate of
change of phase with respect to frequency.) Thus, signal energy is released as fast as is physically
possible without violating causality. However, in doing so, certain frequency components are
released sooner than others, and this constitutes a form of phase distortion, sometimes called dis-
persion. Its presence is indicated by deviations of the group delay from a constant value. A lin-

τ g Ω( )
T0

1 Ω2
–
---------------=

T0
Aln 10
10πωc
----------------=

ω ωc=
ωc/2π 14 kHz=

τg ω( ) 0.5 ms= ω/ 2π( ) 14 kHz≅
ω ωc>

τg 0( )

(a) (b)

(c) (d)

Figure 2.2.11 Response of maximally flat, minimum-phase, low-pass systems: (a) magnitude, (b)
group delay, (c) impulse, (d) step.
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ear-phase system necessarily introduces greater delay than a minimum-phase system with the
same magnitude response. However, it has the advantage that there is no dispersion. This is
accomplished by delaying all frequency components by the same amount of time.

2.2.5 Bandwidth and Rise Time

An important parameter associated with a band-limited low-pass system is the rise time. As illus-
trated in Figures 2.2.10 and 2.2.11, eliminating high frequencies broadens signals in time and
reduces transition times. The step response (response of the system to an input that changes from
0 to 1 when t = 0) shows, in the case of perfect band limiting illustrated in Figure 2.2.10, that the
transition from 0 to 1 requires . Defining this as the rise time gives the useful
result that the product of bandwidth in hertz and rise time in seconds is . For
example, with  the rise time is 25 µs. The rise time equals half of the period of the
cutoff frequency (for this perfectly band-limited system).

Practical low-pass systems, such as the minimum-phase systems shown in Figure 2.2.11, do
not have a sharp cutoff frequency, nor do they have perfectly flat group delay like the ideal low-
pass model in Figure 2.2.10. The product of the –3-dB bandwidth and the rise time for real sys-
tems usually lies within the range of 0.3 to 0.45. The reason that the rise time is somewhat

π/ωc 1/ 2fc( )s=
fc 1 2 fc( )× 0.5=

fc 20 kHz=

(a)

(b)

Figure 2.2.12 Magnitude and group delay characteristics: (a) magnitude response of a minimum-
phase low-pass filter with stop-band attenuation of –A db versus normalized frequency Ω = ω /ωc,
(b) normalized group delay of minimum-phase filter in a.
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shorter (faster) is twofold. Because the cutoff is more gradual, some frequencies beyond the –3-
dB point contribute to the total output response. Also, the rise time to a unit step is convention-
ally defined as the time for the output to change from 10 to 90 percent of its final value.

Figure 2.2.13 displays this important relationship between rise time and bandwidth. Given the
–3-dB bandwidth of a system, the corresponding range of typically expected rise times can be
read. Conversely, knowing the rise time directly indicates nominal bandwidth requirements.
Within the tolerance strip shown in Figure 2.2.13, fixing the bandwidth always determines the
rise time, and conversely. This figure is a useful guide that relates a frequency-domain measure-
ment (bandwidth) to a time-domain measurement (rise time). This fundamental relationship sug-
gests that testing a practical band-limited linear system with signals having rise times
significantly shorter than the rise time of the linear system itself cannot yield new information
about its transient response. In fact, the system may not be able to process such signals linearly.

The slew rate of a system is the maximum time rate of change (output units/time) for large-
signal nonlinear operation when the output is required to change between extreme minimum and
maximum values. It is not the same as rise time, which is a parameter defined for linear opera-
tion.

2.2.5a Echo Distortion

Ripples in the magnitude and/or phase of the system function produce an interesting form
of linear distortion of pulse signals called echo distortion. Assuming that these ripples are small
and sinusoidal, a model for the system function

H ω( )

Figure 2.2.13 Relationship between rise time and bandwidth of practical linear systems. For a
given bandwidth, the rise time will lie within the tolerance strip shown; conversely, the bandwidth
requirements for a specific rise time also can be found.
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is

(2.2.15a)

(2.2.15b)

where c is the number of ripples per unit bandwidth, in hertz, and m and p are the maximum val-
ues of the magnitude and phase ripples, respectively. If m = p = 0, then there is no linear distor-
tion of signals, just unity gain, and uniform time delay of  due to the linear-
phase term –ωa. By using Fourier-transform methods, it can be shown that the output g(t) corre-
sponding to an arbitrary input f (t) has the form

(2.2.16)

Equation (2.2.16) states that the main portion of the output signal is delayed by a seconds and is
undistorted, but there are, in addition, small preechoes and postechoes (replicas) which flank it,
being advanced and delayed in time (relative to t = a) by c seconds. This is shown in Figure
2.2.14. Amplitude echoes are symmetrical (+ + or – –), but phase echoes are asymmetrical (+ –
or –+). These echoes are the linearly distorted portion of the output and are called echo distor-
tion. The detection of linear distortion by observing paired echoes is possible when the echoes do
not overlap and combine with the undistorted part of the signal to form a new (and linearly dis-
torted) waveshape that may be asymmetrical and have a shifted peak time.

In connection with minimum-phase systems, if the magnitude response varies in frequency as
a cosine function, then the phase response varies as a negative sine function (see Figure 2.2.5

H ω( ) H ω( ) e
jφ ω( )

=

H ω( ) 1 m ωc( )cos–=

φ ω( ) p ωc( )sin ωa––=

T τg ω( ) a= =

g t( ) f t a–( ) m p–
2

-------------f t a c––( ) m p+
2

-------------f t a c+–( )+ +=

Figure 2.2.14 Small preechoes and postechoes are produced at the output of a linear system
having linear distortion in response to a pulse-like input. The main output pulse is delayed by a
seconds (minimum value of τ g ) and undistorted. Nonflat magnitude response produces symmetri-
cal (dashed curves) “amplitude” echoes, whereas group-delay distortion produces unsymmetrical
(dotted curves) “phase” echoes. These echoes are the linear distortion. In minimum-phase sys-
tems, the noncasual echoes at t = a – c are equal and opposite and cancel one another. In practi-
cal systems, the echoes may overlap and change the shape of (linearly distort) the main output
pulse.
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beginning at point 4) as the Hilbert-transform relationship—Equation (2.2.11)—would predict.
(Also, the group delay varies, like the magnitude response, as a cosine function.) This result
implies that m and p in Equation (2.2.15) would be equal and opposite; that is, m = –p. In this
case the preecho vanishes because the last term in Equation (2.2.16) is zero, but the postechoes
reinforce. The impulse responses of many minimum-phase systems can be interpreted on this
basis.

2.2.5b Classifications of Phase Distortion

When a system is causal, the minimum amount of phase shift  that it can have is pre-
scribed by the Hilbert-transform relation, Equation (2.2.11). There can be additional or excess
phase shift  as well, so that in general the total phase shift is the sum

(2.2.17)

A practical definition for the excess phase is

(2.2.18)

where  is a constant and . In Equation (2.2.18)  represents pure time delay,
 is the frequency-dependent phase shift of an all-pass filter, and  represents a fre-

quency-independent phase shift caused by, for example, polarity reversal between input and out-
put or a Hilbert transformer which introduces a constant phase shift for all frequencies. The
group delay, defined in Equation (2.2.5), is found by substituting Equation (2.2.18) into Equation
(2.2.17) and differentiating. The result is

(2.2.19a)

(2.2.19b)

Because deviations of group delay from the constant value T indicate the presence of phase dis-
tortion, group-delay distortion is defined as

(2.2.20)

This definition implies that ∆Tg(ω) = 0 is a necessary condition for no phase distortion and, fur-
thermore, that the peak-to-peak excursions of ∆Tg(ω) are both a useful indication and a quantita-
tive measure of phase distortion. Although the all-pass group delay , the minimum-
phase group delay  can be negative, zero, or positive (as can be inferred from the phase
responses in Figure 2.2.7 by examining their negative derivatives).

Note that when  is calculated from φ(ω) by using Equation (2.2.5), only phase-slope
information is preserved. The phase intercept
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is lost through differentiation. This result implies that when  in Equation (2.2.20),
some phase distortion is possible if, for example

[H(ω) is an ideal integrator] or

[H(ω) contains a Hilbert transformer]. Thus  and  (or a multiple of π)
implies no group-delay distortion but a form of phase distortion known as phase-intercept distor-
tion. With reference to Figure 2.2.4, the phase intercept b is zero when the phase delay and group
delay are equal, as stated in Equation (2.2.9), which is the sufficient condition for no phase dis-
tortion. Generally, the total phase distortion produced by a linear system consists of both group-
delay and phase-intercept distortion.

Figure 2.2.15 illustrates phase distortion caused by a frequency-independent phase shift or
phase-intercept distortion. The dotted curve represents a band-limited square wave (sum of the
first four nonzero harmonics), and the dashed curve is the Hilbert transform of the square wave
obtained by shifting the phase of each harmonic π/2 rad, or 90°. This constant phase shift of each
harmonic yields a linearly distorted waveshape having a significantly greater peak factor, as
shown. The solid curve is the sum of the square wave and its Hilbert transform. Because corre-
sponding harmonics in this sum are of equal amplitude and in phase quadrature, the solid curve
could have been obtained by scaling the magnitude of the amplitude spectrum of the original
square wave by  and rotating its phase spectrum by 45°. For this example

 rad

φ 0( ) φm 0( ) θ0+=

∆ τg ω( ) 0=

φ ω( ) φm ω( ) π–
2
------= =

φ 0( ) θ0
π
2
---= =

∆ τg ω( ) 0= φ 0( ) 0≠

2

φx ω( ) θ0 π/4= =

Figure 2.2.15 Band-limited square wave (dotted curve), its Hilbert transform (dashed curve), and
the sum of dotted and dashed curves (solid curve).
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in Equation (2.2.18).
In summary, there are two classifications of phase distortion: 1) group-delay distortion, which

is due to the minimum-phase response and/or the frequency-dependent all-pass portion of the
excess phase response; and 2) phase-intercept distortion, which is caused by a fixed or constant
(frequency-independent) phase shift for all frequencies.
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